Detecting changes on coastal primary sand dunes using multi-temporal Landsat Imagery

被引:1
|
作者
Goncalves, Gil [1 ,2 ]
Duro, Nuno [2 ]
Sousa, Ercilia [2 ,3 ]
Pinto, Luis [2 ,3 ]
Figueiredo, Isabel [2 ,3 ]
机构
[1] INESC Coimbra, Rua Antero de Quental 199, P-3000033 Coimbra, Portugal
[2] Univ Coimbra, P-3000 Coimbra, Portugal
[3] CMUC, Santa Cruz, CA USA
关键词
Coastal change detection; Landsat imagery; unsupervised classification; Open source software; INDEX;
D O I
10.1117/12.2067189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to both natural and anthropogenic causes the coastal primary sand dunes, keeps changing dynamically and continuously their shape, position and extend over time. In this paper we use a case study to show how we monitor the Portuguese coast, between the period 2000 to 2014, using free available multi-temporal Landsat imagery (ETM+ and OLI sensors). First, all the multispectral images are panshaperned to meet the 15 meters spatial resolution of the panchromatic images. Second, using the Modification of Normalized Difference Water Index (MNDWI) and kmeans clustering method we extract the raster shoreline for each image acquisition time. Third, each raster shoreline is smoothed and vectorized using a penalized least square method. Fourth, using an image composed by five synthetic bands and an unsupervised classification method we extract the primary sand dunes. Finally, the visual comparison of the thematic primary sand dunes maps shows that an effective monitoring system can be implemented easily using free available remote sensing imagery data and open source software (QGIS and Orfeo toolbox).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Monitoring of changes in woodlots outside forests by multi-temporal Landsat imagery
    Rahman, M. Mahmudur
    Islam, M. Shafiqul
    Pramanik, M. Abu Taleb
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2018, 11 : 162 - 170
  • [2] An investigation of coastal changes in Hangzhou bay using multi-temporal remote sensing imagery
    Zhang, HG
    Huang, WG
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 2187 - 2190
  • [3] Monitoring water resource changes using multi-temporal Landsat imagery taken in Changnyeong, South Korea
    Choung, Yun-Jae
    Jo, Myung-Hee
    12TH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS (HIC 2016) - SMART WATER FOR THE FUTURE, 2016, 154 : 348 - 352
  • [4] Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery
    Ma, Ronghua
    Duan, Hongtao
    Gu, Xiaohong
    Zhang, Shouxuan
    SENSORS, 2008, 8 (06) : 3988 - 4005
  • [5] Delineation of riparian vegetation from Landsat multi-temporal imagery using PCA
    Alaibakhsh, Masoomeh
    Emelyanova, Irina
    Barron, Olga
    Sims, Neil
    Khiadani, Mehdi
    Mohyeddin, Alireza
    HYDROLOGICAL PROCESSES, 2017, 31 (04) : 800 - 808
  • [6] Bayesian networks for mapping salinity using the multi-temporal Landsat TM imagery
    Huo, DM
    Zhang, JX
    Sun, JB
    Liu, GH
    NEURAL NETWORK AND DISTRIBUTED PROCESSING, 2001, 4555 : 93 - 98
  • [7] Remote sensing of crop residue cover using multi-temporal Landsat imagery
    Zheng, Baojuan
    Campbell, James B.
    de Beurs, Kirsten M.
    REMOTE SENSING OF ENVIRONMENT, 2012, 117 : 177 - 183
  • [8] Modeling for multi-temporal cyanobacterial bloom dominance and distributions using landsat imagery
    Isenstein, Elizabeth M.
    Kim, Daeyoung
    Park, Mi-Hyun
    ECOLOGICAL INFORMATICS, 2020, 59
  • [9] Mapping crop cover using multi-temporal Landsat 8 OLI imagery
    Sonobe, Rei
    Yamaya, Yuki
    Tani, Hiroshi
    Wang, Xiufeng
    Kobayashi, Nobuyuki
    Mochizuki, Kan-ichiro
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (15) : 4348 - 4361
  • [10] Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery
    Hui, Fengming
    Xu, Bing
    Huang, Huabing
    Gong, Peng
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752