Existence and sharp decay rate estimates for a von Karman system with long memory

被引:58
作者
Cavalcanti, Marcelo M. [1 ]
Cavalcanti, Andre D. D. [2 ]
Lasiecka, Irena [3 ,4 ]
Wang, Xiaojun [3 ]
机构
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, PR, Brazil
[2] Univ Estadual Maringa, Dept Chem Engn, BR-87020900 Maringa, PR, Brazil
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[4] Polish Acad Sci, IBS, Warsaw, Poland
关键词
Von Karman system; Memory kernel; Decay rate; GENERAL DECAY; VISCOELASTIC EQUATION; ASYMPTOTIC STABILITY; EVOLUTION-EQUATIONS; WAVE-EQUATION; ENERGY; STABILIZATION; BEHAVIOR; PLATES;
D O I
10.1016/j.nonrwa.2014.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear model described by von Karman equations with long memory is considered. Hadamard wellposedness of weak solutions, regularity of solutions and intrinsic decay rate estimates for the energy are established by assuming that the memory kernel g satisfies the inequality introduced in Alabau-Boussouira and Cannarsa (2009): g' <= -H(g), where H(s) is a given continuous, positive, increasing, and convex function such that H(0) = 0. The decay rates obtained are optimal in the sense that they reconstruct decay rates assumed on relaxation kernel. The novelty of the paper is at the level of both: the results obtained and the methodology applied. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 45 条
[1]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[2]   A general method for proving sharp energy decay rates for memory-dissipative evolution equations [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) :867-872
[3]  
[Anonymous], 1957, IZV AKAD NAUK SSSR M
[4]  
[Anonymous], 1998, DiFFerential Integral Equations
[5]  
[Anonymous], SIAM STUDIES APPL MA
[6]  
Avalos G., 1998, Optimal Control Theory, Algorithms, and Applications, P1
[7]   Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation [J].
Avalos, G ;
Lasiecka, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :155-182
[8]  
Avalos G, 1999, INT SER NUMER MATH, V133, P13
[9]   Exponential decay rates for a full von Karman system of dynamic thermoelasticity [J].
Benabdallah, A ;
Lasiecka, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :51-93
[10]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331