An Extended Social Force Model via Pedestrian Heterogeneity Affecting the Self-Driven Force

被引:39
|
作者
Wu, Wenhan [1 ]
Chen, Maoyin [1 ]
Li, Jinghai [1 ]
Liu, Binglu [1 ]
Zheng, Xiaoping [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Crowd dynamics; social force model; pedestrian heterogeneity; evacuation management; nonlinear system; CROWD; SIMULATION; EVACUATION; BEHAVIOR; DISABILITIES; MECHANISMS; DYNAMICS; ESCAPE; STRESS;
D O I
10.1109/TITS.2021.3074914
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As one of the most effective models for human collective motion, the social force model (SFM) simulates the dynamics of crowd evacuation from a microscopic perspective. However, it treats pedestrians as the homogeneous rigid particles, whereas pedestrians are diverse and heterogeneous in real life. Therefore, this paper develops a pedestrian heterogeneity-based social force model (PHSFM) by introducing physique and mentality coefficients into the SFM to quantify physiology and psychology attributes of pedestrians, respectively. These two coefficients can affect the self-driven force by changing the desired speed, thus characterizing the pedestrian heterogeneity more realistically. Simulation experiments demonstrate that the PHSFM designs a more general and accurate theoretical framework for the expression of pedestrian heterogeneity, which realizes special behavior patterns caused by individual diversity. Furthermore, our model provides effective guidelines for the management of crowds in potential research fields such as transportation, architectural science and safety science.
引用
收藏
页码:7974 / 7986
页数:13
相关论文
共 50 条
  • [31] Tolerance Coefficient Based Improvement of Pedestrian Social Force Model
    Wang, Ruiping
    Song, Xiao
    Zhou, Junhua
    Li, Xu
    METHODS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, 2019, 1094 : 201 - 210
  • [32] A social force model for the crowd evacuation in a terrorist attack
    Liu, Qian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 502 : 315 - 330
  • [33] Waiting pedestrians in the social force model
    Johansson, Fredrik
    Peterson, Anders
    Tapani, Andreas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 419 : 95 - 107
  • [34] A Modified Social Force Model (SFM) for Pedestrian Behavior in the Presence of Autonomous Vehicles (AVs)
    Rezwana, Saki
    Jackson, Eric
    Filipovska, Monika
    Lownes, Nicholas
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2022: TRANSPORTATION PLANNING AND WORKFORCE DEVELOPMENT, 2022, : 51 - 63
  • [35] A Social Force-Based Model for Pedestrian Evacuation with Static Guidance in Emergency Situations
    Zhang, Ping
    Liu, Wenjun
    Yang, Lizhong
    Wu, Jinzhong
    Wang, Kaixuan
    Cui, Yujie
    FIRE-SWITZERLAND, 2025, 8 (01):
  • [36] Destination and route choice models for bidirectional pedestrian flow based on the social force model
    Cao Ning-bo
    Qu Zhao-wei
    Chen Yong-heng
    Zhao Li-ying
    Song Xian-min
    Bai Qiao-wen
    IET INTELLIGENT TRANSPORT SYSTEMS, 2017, 11 (09) : 537 - 545
  • [37] An extended social force model considering the psychological impact of the hazard source and its behavioural manifestation
    Deng, Kaifeng
    Hu, Xiangmin
    Li, Meng
    Chen, Tao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 627
  • [38] Guided crowd dynamics via modified social force model
    Yang, Xiaoxia
    Dong, Hairong
    Wang, Qianling
    Chen, Yao
    Hu, Xiaoming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 411 : 63 - 73
  • [39] Improved social force model for rescue action during evacuation
    Tian, Xiaoyong
    Cui, Hongjun
    Zhu, Minqing
    MODERN PHYSICS LETTERS B, 2020, 34 (25):
  • [40] Improved social force model considering the influence of COVID-19 pandemic: Pedestrian evacuation under regulation
    Li, Qiaoru
    Zhao, Mingyang
    Zhang, Zhe
    Li, Kun
    Chen, Liang
    Zhang, Jianlei
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 509 - 517