Suppressing lithium dendrite formation by slowing its desolvation kinetics

被引:55
作者
Yang, Huicong [1 ,2 ]
Yin, Lichang [1 ,2 ]
Shi, Huifa [3 ,4 ]
He, Kuang [1 ,2 ]
Cheng, Hui-Ming [1 ,2 ,5 ]
Li, Feng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[3] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen Key Lab Graphene Based Mat, Engn Lab Functionalized Carbon Mat, Shenzhen 518055, Peoples R China
[4] Tsinghua Univ, Sch Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
METAL ANODE; RECHARGEABLE BATTERIES; ELECTROLYTES; DEPOSITION; DESIGN; LIQUID; SAFE;
D O I
10.1039/c9cc07092c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Slowing the dendrite formation process is one way to alleviate the fast capacity fade and safety issues in lithium metal battery systems. We used tetraethylene glycol dimethyl ether (TEGDME) as a complementary solvent to increase the desolvation activation energy of Li+, reduce the speed of lithium electrodeposition kinetics, and suppress dendrite formation. Density functional theory calculations combined with Raman spectroscopy indicate that a stronger coordination interaction is obtained between Li+ and TEGDME than between Li+ and 1,2-dimethoxyethane (DME) or 1,3-dioxolane (DOL). Such a strong coordination leads to a slower electrochemical reaction rate. As a result, uniform lithium electrodeposition morphology and good cycling stability of a Li vertical bar Li symmetric cell for more than 500 hours were achieved. Our approach suggests a way in which dendrite formation can be controlled by the electrochemical reaction itself.
引用
收藏
页码:13211 / 13214
页数:4
相关论文
共 30 条
[1]   Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) :A430-A436
[2]   Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy [J].
Brouillette, D ;
Irish, DE ;
Taylor, NJ ;
Perron, G ;
Odziemkowski, M ;
Desnoyers, JE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (24) :6063-6071
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes [J].
Cui, Jiang ;
Yao, Shanshan ;
Ihsan-Ul-Haq, Muhammad ;
Wu, Junxiong ;
Kim, Jang-Kyo .
ADVANCED ENERGY MATERIALS, 2019, 9 (01)
[5]   Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms [J].
Dai, Hongliu ;
Xi, Kai ;
Liu, Xin ;
Lai, Chao ;
Zhang, Shanqing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) :17515-17521
[6]   Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity [J].
Deng, Wei ;
Zhu, Wenhua ;
Zhou, Xufeng ;
Liu, Zhaoping .
ENERGY STORAGE MATERIALS, 2018, 15 :266-273
[7]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[8]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)
[9]   Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth [J].
Jaeckle, Markus ;
Gross, Axel .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (17)
[10]   The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries [J].
Jozwiuk, Anna ;
Berkes, Balazs B. ;
Weiss, Thomas ;
Sommer, Heino ;
Janek, Juergen ;
Brezesinski, Torsten .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (08) :2603-2608