Multi-Scale Warping for Video Frame Interpolation

被引:1
|
作者
Choi, Whan [1 ]
Koh, Yeong Jun [2 ]
Kim, Chang-Su [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[2] Chungnam Natl Univ, Dept Comp Sci & Engn, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
Interpolation; Kernel; Feature extraction; Convolution; Adaptive optics; Streaming media; Optical imaging; Video frame interpolation; convolutional neural network; multi-scale feature; kernel-based approach; deformable convolution; adaptive convolution; MOTION ESTIMATION;
D O I
10.1109/ACCESS.2021.3126593
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel video interpolation network to improve the temporal resolutions of video sequences is proposed in this work. We develop a multi-scale warping module to interpolate intermediate frames robustly for both small and large motions. Specifically, the proposed multi-scale warping module deals with large motions between two consecutive frames using coarse-scale features, while estimating detailed local motions by exploring fine-scale features. To this end, it takes multi-scale features from the encoder and estimates kernel weights and offset vectors for each scale. Finally, it synthesizes multi-scale warping frames and combines them to obtain an intermediate frame. Extensive experimental results demonstrate that the proposed algorithm outperforms state-of-the-art video interpolation algorithms on various benchmark datasets.
引用
收藏
页码:150470 / 150479
页数:10
相关论文
共 50 条
  • [21] Video Frame Interpolation: A Comprehensive Survey
    Dong, Jiong
    Ota, Kaoru
    Dong, Mianxiong
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [22] Residual Learning of Video Frame Interpolation Using Convolutional LSTM
    Suzuki, Keito
    Ikehara, Masaaki
    IEEE ACCESS, 2020, 8 : 134185 - 134193
  • [23] Video Frame Interpolation With Learnable Uncertainty and Decomposition
    Yu, Zhiyang
    Chen, Xijun
    Ren, Shunqing
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2642 - 2646
  • [24] A Motion Distillation Framework for Video Frame Interpolation
    Zhou, Shili
    Tan, Weimin
    Yan, Bo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3728 - 3740
  • [25] Multi-Frame Pyramid Refinement Network for Video Frame Interpolation
    Zhang, Haoxian
    Wang, Ronggang
    Zhao, Yang
    IEEE ACCESS, 2019, 7 : 130610 - 130621
  • [26] MFNet:Real-Time Motion Focus Network for Video Frame Interpolation
    Zhu, Guosong
    Qin, Zhen
    Ding, Yi
    Liu, Yao
    Qin, Zhiguang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3251 - 3262
  • [27] A CONCATENATED MODEL FOR VIDEO FRAME INTERPOLATION
    Chen, Ying
    Smith, Mark J. T.
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 565 - 569
  • [28] DSF-Net: Dual-Stream Fused Network for Video Frame Interpolation
    Zhang, Fuhua
    Yang, Chuang
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1122 - 1126
  • [29] A Motion Refinement Network With Local Compensation for Video Frame Interpolation
    Wang, Kaiqiao
    Liu, Peng
    IEEE ACCESS, 2023, 11 : 103092 - 103101
  • [30] MOTION FEEDBACK DESIGN FOR VIDEO FRAME INTERPOLATION
    Hu, Mengshun
    Liao, Liang
    Xiao, Jing
    Gu, Lin
    Satoh, Shin'ichi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4347 - 4351