Further results on A-numerical radius inequalities

被引:6
作者
Rout, Nirmal Chandra [1 ]
Mishra, Debasisha [1 ]
机构
[1] Natl Inst Technol Raipur, Dept Math, Raipur 492010, Madhya Pradesh, India
关键词
A-numerical radius; Moore-Penrose inverse; Positive operator; Semi-inner product; Inequality; Operator matrix; OPERATORS;
D O I
10.1007/s43034-021-00156-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a bounded linear positive operator on a complex Hilbert space H. Furthermore, let B-A double left arrow H double right arrow denote the set of all bounded linear operators on H whose A-adjoint exists, and A signify a diagonal operator matrix with diagonal entries are A. Very recently, several A-numerical radius inequalities of 2 x 2 operator matrices were established. In this paper, we prove a few new A-numerical radius inequalities for 2 x 2 and n x n operator matrices. We also provide a new proof of an existing result by relaxing a sufficient condition "A is strictly positive". Our proofs show the importance of the theory of the Moore-Penrose inverse of a bounded linear operator in this field of study.
引用
收藏
页数:17
相关论文
共 16 条
  • [1] [Anonymous], 1976, Generalized Inverses and Applications
  • [2] Metric properties of projections in semi-Hilbertian spaces
    Arias, M. Laura
    Corach, Gustavo
    Gonzalez, M. Celeste
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) : 11 - 28
  • [3] Partial isometries in semi-Hilbertian spaces
    Arias, M. Laura
    Corach, Gustavo
    Gonzalez, M. Celeste
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1460 - 1475
  • [4] Bhunia P, 2020, ELECTRON J LINEAR AL, V36
  • [5] Bognar Janos, 1974, Indefinite Inner Product Spaces, DOI [10.1007/978-3-642-65567-8, DOI 10.1007/978-3-642-65567-8]
  • [6] On A-numerical radius inequalities for 2 x 2 operator matrices
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14) : 2672 - 2692
  • [7] SomeA-numerical radius inequalities for semi-Hilbertian space operators
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 980 - 996
  • [9] Numerical Radius Inequalities for Commutators of Hilbert Space Operators
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 739 - 749
  • [10] Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces
    Moslehian, M. S.
    Xu, Q.
    Zamani, A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 : 299 - 321