Nonexistence of Levi flat hypersurfaces with positive normal bundle in compact Kahler manifolds of dimension ≥ 3

被引:1
作者
Biard, Severine [1 ,3 ]
Iordan, Andrei [2 ]
机构
[1] Univ Paris 06, Inst Math, UMR 7586, CNRS, Case 247,4 Pl Jussieu, F-75252 Paris 05, France
[2] Sorbonne Univ, Fac Sci & Ingn, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ Polytech Hauts de France, LAMAV, Campus Mt Houy, F-59313 Valenciennes 9, France
关键词
Levi flat hypersurface; weighted partial derivative-equation; MINIMAL SETS; SPACES; REGULARITY; FOLIATIONS; OPERATOR; THEOREM;
D O I
10.1142/S0129167X20500044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact connected Milder manifold of dimension >= 3 and L a C-infinity Levi flat hypersurface in X. Then the normal bundle to the Levi foliation does not admit a Hermitian metric with positive curvature along the leaves. This represents an answer to a conjecture of Marco Brunella.
引用
收藏
页数:14
相关论文
共 33 条
[1]  
Andreotti A., 1961, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V15, P283
[2]  
Andreotti A., 1965, PUBL MATH-PARIS, V25, P81
[3]  
[Anonymous], 1967, J. Math. Soc. Jpn, DOI DOI 10.1215/KJM/1250524335
[4]  
Aronszajn Aro57 N., 1957, J. Math. Pures Appl., V36, P235
[5]  
Barrett D.E., 1988, Publ. Mat., V32, P171
[6]   On the defined curves of some differential equations [J].
Bendixson, I .
ACTA MATHEMATICA, 1901, 24 (01) :1-88
[7]   A Sobolev mapping property of the Bergman kernel [J].
Berndtsson, B ;
Charpentier, P .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :1-10
[8]   The partial derivative-problem with support conditions on some weakly pseudoconvex domains [J].
Brinkschulte, J .
ARKIV FOR MATEMATIK, 2004, 42 (02) :259-282
[9]  
Brunella M., 2010, ANN FAC SCI TOULOUSE, V2, P405, DOI DOI 10.5802/AFST.1248
[10]   EXCEPTIONAL SINGULARITIES OF CODIMENSION ONE HOLOMORPHIC FOLIATIONS [J].
Brunella, Marco ;
Perrone, Carlo .
PUBLICACIONS MATEMATIQUES, 2011, 55 (02) :295-312