Materials Informatics for Mechanical Deformation: A Review of Applications and Challenges

被引:33
作者
Frydrych, Karol [1 ]
Karimi, Kamran [1 ]
Pecelerowicz, Michal [1 ]
Alvarez, Rene [1 ]
Dominguez-Gutierrez, Francesco Javier [1 ,2 ]
Rovaris, Fabrizio [1 ]
Papanikolaou, Stefanos [1 ]
机构
[1] Natl Ctr Nucl Res, NOMATEN Ctr Excellence, Ul A Soltana 7, PL-05400 Otwock, Poland
[2] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11749 USA
基金
欧盟地平线“2020”;
关键词
metal alloys; machine learning; informatics; defects; dislocations; mechanical deformation; data science; ontology; ARTIFICIAL NEURAL-NETWORK; DISCRETE DISLOCATION DYNAMICS; HIGH-ENTROPY ALLOYS; MACHINE LEARNING PREDICTION; GLASS-FORMING ABILITY; HIGH-CYCLE FATIGUE; CRYSTAL PLASTICITY; DATA SCIENCE; PROCESSING PARAMETERS; ELASTIC PROPERTIES;
D O I
10.3390/ma14195764
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the design and development of novel materials that have excellent mechanical properties, classification and regression methods have been diversely used across mechanical deformation simulations or experiments. The use of materials informatics methods on large data that originate in experiments or/and multiscale modeling simulations may accelerate materials' discovery or develop new understanding of materials' behavior. In this fast-growing field, we focus on reviewing advances at the intersection of data science with mechanical deformation simulations and experiments, with a particular focus on studies of metals and alloys. We discuss examples of applications, as well as identify challenges and prospects.
引用
收藏
页数:31
相关论文
共 261 条
[21]   Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals [J].
Bolin, Ryder ;
Yavas, Hakan ;
Song, Hengxu ;
Hemker, Kevin J. ;
Papanikolaou, Stefanos .
CRYSTALS, 2019, 9 (12)
[22]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[23]   When Deep Learning Meets Digital Image Correlation [J].
Boukhtache, S. ;
Abdelouahab, K. ;
Berry, F. ;
Blaysat, B. ;
Grediac, M. ;
Sur, F. .
OPTICS AND LASERS IN ENGINEERING, 2021, 136
[24]   Shock deformation of face-centred-cubic metals on subnanosecond timescales [J].
Bringa, M. ;
Rosolankova, K. ;
Rudd, R. E. ;
Remington, B. A. ;
Wark, J. S. ;
Duchaineau, M. ;
Kalantar, H. ;
Hawreliak, J. ;
Belak, J. .
NATURE MATERIALS, 2006, 5 (10) :805-809
[25]   Materials Knowledge Systems in Python']Python-a Data Science Framework for Accelerated Development of Hierarchical Materials [J].
Brough, David B. ;
Wheeler, Daniel ;
Kalidindi, Surya R. .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2017, 6 (01) :36-53
[26]   Connecting atomistic and mesoscale simulations of crystal plasticity [J].
Bulatov, V ;
Abraham, FF ;
Kubin, L ;
Devincre, B ;
Yip, S .
NATURE, 1998, 391 (6668) :669-672
[27]   Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools [J].
Bulgarevich, Dmitry S. ;
Tsukamoto, Susumu ;
Kasuya, Tadashi ;
Demura, Masahiko ;
Watanabe, Makoto .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2019, 20 (01) :532-542
[28]   Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures [J].
Bulgarevich, Dmitry S. ;
Tsukamoto, Susumu ;
Kasuya, Tadashi ;
Demura, Masahiko ;
Watanabe, Makoto .
SCIENTIFIC REPORTS, 2018, 8
[29]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[30]   Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning [J].
Chang, Yao-Jen ;
Jui, Chia-Yung ;
Lee, Wen-Jay ;
Yeh, An-Chou .
JOM, 2019, 71 (10) :3433-3442