BOLTZMANN-GRAD LIMIT OF A HARD SPHERE SYSTEM IN A BOX WITH ISOTROPIC BOUNDARY CONDITIONS

被引:2
作者
Le Bihan, Corentin [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA UMR CNRS 5669, 46 Allee Italie, F-69364 Lyon, France
关键词
Low density; Boltzmann-Grad limit; hard-sphere; stochastic boundary condition; kinetic theory; EQUATION; GAS;
D O I
10.3934/dcds.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a rigorous derivation of the Boltzmann equation in a compact domain with isotropic boundary conditions. We consider a system of N hard spheres of diameter epsilon in a box Lambda := [0, 1] x (R/Z)(2). When a particle meets the boundary of the domain, it is instantaneously reinjected into the box with a random direction, but conserving kinetic energy. We prove that the first marginal of the process converges in the scaling N epsilon(2) = 1, epsilon -> 0 to the solution of the Boltzmann equation, with the same short time restriction of Lanford's classical theorem.
引用
收藏
页码:1903 / 1932
页数:30
相关论文
共 21 条
[1]  
Alexander R. K., 1975, INFINITE HARD SPHERE
[2]  
[Anonymous], 1975, Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., DOI DOI 10.1007/3-540-07171-7-1
[3]  
[Anonymous], 1964, Lectures on Gas Theory
[4]   A microscopic view of the Fourier law [J].
Bodineau, Thierry ;
Gallagher, Isabelle ;
Saint-Raymond, Laure .
COMPTES RENDUS PHYSIQUE, 2019, 20 (05) :402-418
[5]   The Boltzmann-Grad limit for a one-dimensional Boltzmann equation in a stationary state [J].
Caprino, S ;
Pulvirenti, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (01) :63-81
[6]  
Cercignani Carlo, 1994, Applied Mathematical Sciences, V106
[7]  
Cercignani Carlo, 2000, Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, V21
[8]   The Propagation of Chaos for a Rarefied Gas of Hard Spheres in the Whole Space [J].
Denlinger, Ryan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :885-952
[9]   Stationary Non equilibrium States in Kinetic Theory [J].
Esposito, R. ;
Marra, R. .
JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) :773-809
[10]   Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law [J].
Esposito, R. ;
Guo, Y. ;
Kim, C. ;
Marra, R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (01) :177-239