Real-Time Hair Filtering with Convolutional Neural Networks

被引:0
|
作者
Currius, Roc R. [1 ]
Assarsson, Ulf [1 ]
Sintorn, Erik [1 ]
机构
[1] Chalmers Inst Technol, Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
hair; real-time; transparency; filtering; neural networks;
D O I
10.1145/3522606
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Rendering of realistic-looking hair is in general still too costly to do in real-time applications, from simulating the physics to rendering the fine details required for it to look natural, including self-shadowing. We show how an autoencoder network, that can be evaluated in real time, can be trained to filter an image of few stochastic samples, including self-shadowing, to produce a much more detailed image that takes into account real hair thickness and transparency.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Real-Time Hair Simulation With Neural Interpolation
    Lyu, Qing
    Chai, Menglei
    Chen, Xiang
    Zhou, Kun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (04) : 1894 - 1905
  • [2] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [3] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13) : 10375 - 10396
  • [4] A Real-Time Super-Resolution Method Based on Convolutional Neural Networks
    Shipeng Fu
    Lu Lu
    Hu Li
    Zhen Li
    Wei Wu
    Anand Paul
    Gwanggil Jeon
    Xiaomin Yang
    Circuits, Systems, and Signal Processing, 2020, 39 : 805 - 817
  • [5] A Real-Time Super-Resolution Method Based on Convolutional Neural Networks
    Fu, Shipeng
    Lu, Lu
    Li, Hu
    Li, Zhen
    Wu, Wei
    Paul, Anand
    Jeon, Gwanggil
    Yang, Xiaomin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (02) : 805 - 817
  • [6] Evaluation of Lightweight Convolutional Neural Networks for Real-Time Electrical Assets Detection
    Barbosa, Joel
    Dias, Andre
    Almeida, Jose
    Silva, Eduardo
    FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1, 2020, 1092 : 99 - 112
  • [7] Real-time identification of marine mammal calls based on convolutional neural networks
    Duan, Dexin
    Lu, Lian-gang
    Jiang, Ying
    Liu, Zongwei
    Yang, Chunmei
    Guo, Jingsong
    Wang, Xiaoyan
    APPLIED ACOUSTICS, 2022, 192
  • [8] Real-time Neural Networks Implementation Proposal for Microcontrollers
    Guimaraes, Caio Jose B. V.
    Fernandes, Marcelo A. C.
    ELECTRONICS, 2020, 9 (10) : 1 - 20
  • [9] Crop seed classification based on a real-time convolutional neural network
    Bakumenko, A.
    Bakhchevnikov, V
    Derkachev, V
    Kovalev, A.
    Lobach, V
    Potipak, M.
    SPIE FUTURE SENSING TECHNOLOGIES (2020), 2020, 11525
  • [10] Real-Time Gesture Recognition with Shallow Convolutional Neural Networks Employing an Ultra Low Cost Radar System
    Ehrnsperger, Matthias G.
    Brenner, Thomas
    Siart, Uwe
    Eibert, Thomas F.
    PROCEEDINGS OF THE 2020 GERMAN MICROWAVE CONFERENCE (GEMIC), 2020, : 88 - 91