Multi-robot formation control using distance and orientation

被引:17
作者
Lopez-Gonzalez, A. [1 ]
Ferreira, E. D. [2 ]
Hernandez-Martinez, E. G. [1 ]
Flores-Godoy, J. J. [3 ]
Fernandez-Anaya, G. [4 ]
Paniagua-Contro, P. [1 ]
机构
[1] Univ Iberoamer, Dept Ingn, Mexico City, DF, Mexico
[2] Univ Catolica Uruguay, Fac Ingn & Tecnol, Dept Ingn Elect, Montevideo, Uruguay
[3] Univ Catolica Uruguay, Dept Matemat, Fac Ingn & Tecnol, Montevideo, Uruguay
[4] Univ Iberoamer, Dept Fis & Matemat, Mexico City, DF, Mexico
关键词
Multi-robot systems; formation control; collision avoidance; decentralized control; Lyapunov stability theory;
D O I
10.1080/01691864.2016.1159143
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Formation control analyses the convergence of a group of mobile agents to predefined geometric patterns. In traditional approaches, it is assumed that each agent knows the exact position of certain members of the group with respect to a reference frame and the associated control laws are designed according to inter-robot relative positions. Designing a more decentralized scheme, this paper proposes a formation scheme, using Lyapunov techniques, considering that the local controllers of the agents can be equipped with distance and orientation sensors. The main result of the paper applies to certain distance-based potential functions with inter-robot collision avoidance and an arbitrary undirected formation graph. Also, the control law includes an integral-type control that eliminates the effects of the dead-zone of actuators in order to avoid the standard techniques of normalization. The control approach is analyzed for omnidirectional robots with numerical simulations and extended for unicycle-type robots with real-time experiments.
引用
收藏
页码:901 / 913
页数:13
相关论文
共 34 条
[1]  
Anderson BDO, 2012, IET CONTR ENG SER, V76, P121, DOI 10.1049/PBCE076E_ch13
[2]   Decentralized time-varying formation control for multi-robot systems [J].
Antonelli, Gianluca ;
Arrichiello, Filippo ;
Caccavale, Fabrizio ;
Marino, Alessandro .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (07) :1029-1043
[3]   Guest editorial - Advances in multirobot systems [J].
Arai, T ;
Pagello, E ;
Parker, LE .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (05) :655-661
[4]   Behavior-based formation control for multirobot teams [J].
Balch, T ;
Arkin, RC .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (06) :926-939
[5]   Modeling and controlling a robotic convoy using guidance laws strategies [J].
Belkhouche, F ;
Belkhouche, B .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (04) :813-825
[6]  
Brockett Roger W., 1983, Asymptotic stability and feedback stabilization in Differential Geometric Control theory
[7]   Controlling Rigid Formations of Mobile Agents Under Inconsistent Measurements [J].
de Marina, Hector Garcia ;
Cao, Ming ;
Jayawardhana, Bayu .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (01) :31-39
[8]   A graph theoretic approach for modeling mobile robot team formations [J].
Desai, JP .
JOURNAL OF ROBOTIC SYSTEMS, 2002, 19 (11) :511-525
[9]   Modeling and control of formations of nonholonomic mobile robots [J].
Desai, JP ;
Ostrowski, JP ;
Kumar, V .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06) :905-908
[10]  
Desai JP, 1998, IEEE INT CONF ROBOT, P2864, DOI 10.1109/ROBOT.1998.680621