Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model

被引:147
作者
Lahrouz, A. [1 ]
Omari, L. [1 ]
Kiouach, D. [1 ]
机构
[1] Fac Sci Dhar Mehraz, Dept Math, Lab Comp Sci Stat & Qual, Atlas, Fes, Morocco
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2011年 / 16卷 / 01期
关键词
epidemic model; Lypunov function; Ito's formula; global stability; moment exponential stability; LYAPUNOV FUNCTIONS; STABILITY; SEIR;
D O I
10.15388/NA.16.1.14115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present in this paper an SIRS epidemic model with saturated incidence rate and disease-inflicted mortality. The Global stability of the endemic equilibrium state is proved by constructing a Lyapunov function. For the stochastic version, the global existence and positivity of the solution is showed, and the global stability in probability and pth moment of the system is proved under suitable conditions on the intensity of the white noise perturbation.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 30 条
[1]  
Afanasev VN, 1996, Mathematical theory of control systems design
[2]  
[Anonymous], 1982, Stability of Motion
[3]   Stability of epidemic model with time delays influenced by stochastic perturbations [J].
Beretta, E ;
Kolmanovskii, V ;
Shaikhet, L .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 45 (3-4) :269-277
[4]   Global stability of a stage-structured epidemic model with a nonlinear incidence [J].
Cai, Li-Ming ;
Li, Xue-Zhi ;
Ghosh, Mini .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) :73-82
[5]   Analysis of a SEIV epidemic model with a nonlinear incidence rate [J].
Cai, Li-Ming ;
Li, Xue-Zhi .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (07) :2919-2926
[6]   Analysis of an HIV/AIDS treatment model with a nonlinear incidence [J].
Cai, Liming ;
Wu, Jingang .
CHAOS SOLITONS & FRACTALS, 2009, 41 (01) :175-182
[7]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[8]   Epidemiological Models and Lyapunov Functions [J].
Fall, A. ;
Iggidr, A. ;
Sallet, G. ;
Tewa, J. J. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2007, 2 (01) :62-83
[9]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[10]  
Iggidr A., 2007, Discrete Contin. Dyn. Syst., Suppl., P506