Interaction between Kirchhoff vortices and point vortices in an ideal fluid

被引:2
作者
Borisov, A. V. [1 ]
Mamaev, I. S. [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
基金
俄罗斯基础研究基金会;
关键词
vortex patch; point vortex; integrability;
D O I
10.1134/S1560354707010066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the interaction of two vortex patches ( elliptic Kirchho. vortices) which move in an unbounded volume of an ideal incompressible fluid. A moment second-order model is used to describe the interaction. The case of integrability of a Kirchho. vortex and a point vortex by the variable separation method is qualitatively analyzed. A new case of integrability of two Kirchho. vortices is found. A reduced form of equations for two Kirchho. vortices is proposed and used to analyze their regular and chaotic behavior.
引用
收藏
页码:68 / 80
页数:13
相关论文
共 40 条
[31]   Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane [J].
A. D. Vishnevskaya ;
M. V. Demina .
Mathematical Notes, 2023, 114 :46-54
[32]   Finiteness of fixed equilibrium configurations of point vortices in the plane with a background flow [J].
Cheung, Pak-Leong ;
Tuen Wai Ng .
NONLINEARITY, 2014, 27 (10) :2445-2463
[33]   On the motion of A+1 vortices in a two-layer rotating fluid [J].
Sokolovskiy, Mikhail A. ;
Verron, Jacques .
IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 :481-+
[35]   Coupled Motion of a Rigid Body and Point Vortices on a Two-Dimensional Spherical Surface [J].
Borisov, A. V. ;
Mamaev, I. S. ;
Ramodanov, S. M. .
REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5) :440-461
[36]   Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface [J].
A. V. Borisov ;
I. S. Mamaev ;
S. M. Ramodanov .
Regular and Chaotic Dynamics, 2010, 15 :440-461
[37]   Bifurcation analysis of the motion of a cylinder and a point vortex in an ideal fluid [J].
A. V. Borisov ;
P. E. Ryabov ;
S. V. Sokolov .
Mathematical Notes, 2016, 99 :834-839
[38]   Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid [J].
Borisov, A. V. ;
Ryabov, P. E. ;
Sokolov, S. V. .
MATHEMATICAL NOTES, 2016, 99 (5-6) :834-839
[39]   Mean Field Limit of Point Vortices with Environmental Noises to Deterministic 2D Navier-Stokes Equations [J].
Flandoli, Franco ;
Luo, Dejun .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
[40]   Applications of the Kosambi-Cartan-Chern Theory to Hamiltonian Systems on a Cotangent Bundle: Linking Geometric Quantities to the Self-Similar Motions of Three Point Vortices [J].
Hirakui, Yuma ;
Yajima, Takahiro .
MATHEMATICS, 2025, 13 (01)