Interaction between Kirchhoff vortices and point vortices in an ideal fluid

被引:2
作者
Borisov, A. V. [1 ]
Mamaev, I. S. [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
基金
俄罗斯基础研究基金会;
关键词
vortex patch; point vortex; integrability;
D O I
10.1134/S1560354707010066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the interaction of two vortex patches ( elliptic Kirchho. vortices) which move in an unbounded volume of an ideal incompressible fluid. A moment second-order model is used to describe the interaction. The case of integrability of a Kirchho. vortex and a point vortex by the variable separation method is qualitatively analyzed. A new case of integrability of two Kirchho. vortices is found. A reduced form of equations for two Kirchho. vortices is proposed and used to analyze their regular and chaotic behavior.
引用
收藏
页码:68 / 80
页数:13
相关论文
共 40 条
[21]   Self-Similar Collapse of n Point Vortices [J].
Henryk Kudela .
Journal of Nonlinear Science, 2014, 24 :913-933
[22]   Dipole and Multipole Flows with Point Vortices and Vortex Sheets [J].
Kevin A. O’Neil .
Regular and Chaotic Dynamics, 2018, 23 :519-529
[23]   Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane [J].
Vishnevskaya, A. D. ;
Demina, M. V. .
MATHEMATICAL NOTES, 2023, 114 (1-2) :46-54
[24]   Toroidal Geometry Stabilizing a Latitudinal Ring of Point Vortices on a Torus [J].
Sakajo, Takashi ;
Shimizu, Yuuki .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (03) :1043-1077
[25]   Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices [J].
Marques, Gil ;
Gama, Silvio .
AXIOMS, 2025, 14 (04)
[26]   Equation of motion for point vortices in multiply connected circular domains [J].
Sakajo, Takashi .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2108) :2589-2611
[27]   Stationary states of identical point vortices and vortex foam on the sphere [J].
O'Neil, Kevin A. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2150)
[28]   Toroidal Geometry Stabilizing a Latitudinal Ring of Point Vortices on a Torus [J].
Takashi Sakajo ;
Yuuki Shimizu .
Journal of Nonlinear Science, 2018, 28 :1043-1077
[29]   Linear stability analysis of double rows of point vortices for an inviscid generalized two-dimensional fluid system [J].
Iwayama, Takahiro ;
Watanabe, Takeshi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (25)
[30]   Dynamics of perturbed relative equilibria of point vortices on the sphere or plane [J].
Patrick, GW .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (03) :401-415