Interaction between Kirchhoff vortices and point vortices in an ideal fluid

被引:2
|
作者
Borisov, A. V. [1 ]
Mamaev, I. S. [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2007年 / 12卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
vortex patch; point vortex; integrability;
D O I
10.1134/S1560354707010066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the interaction of two vortex patches ( elliptic Kirchho. vortices) which move in an unbounded volume of an ideal incompressible fluid. A moment second-order model is used to describe the interaction. The case of integrability of a Kirchho. vortex and a point vortex by the variable separation method is qualitatively analyzed. A new case of integrability of two Kirchho. vortices is found. A reduced form of equations for two Kirchho. vortices is proposed and used to analyze their regular and chaotic behavior.
引用
收藏
页码:68 / 80
页数:13
相关论文
共 39 条
  • [1] Interaction between Kirchhoff vortices and point vortices in an ideal fluid
    A. V. Borisov
    I. S. Mamaev
    Regular and Chaotic Dynamics, 2007, 12 : 68 - 80
  • [2] Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid
    Bizyaev, I. A.
    Mamaev, I. S.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2020, 30 (04): : 618 - 627
  • [3] Interaction of point and dipole vortices in an incompressible liquid
    K. N. Kulik
    A. V. Tur
    V. V. Yanovsky
    Theoretical and Mathematical Physics, 2010, 162 : 383 - 400
  • [4] Interaction of point and dipole vortices in an incompressible liquid
    Kulik, K. N.
    Tur, A. V.
    Yanovsky, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (03) : 383 - 400
  • [5] Point vortices on hyperbolic sphere
    Hwang, Seungsu
    Kim, Sun-Chul
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 475 - 488
  • [6] Clustered Equilibria of Point Vortices
    O'Neil, Kevin A.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 555 - 561
  • [7] Clustered equilibria of point vortices
    Kevin A. O’Neil
    Regular and Chaotic Dynamics, 2011, 16 : 555 - 561
  • [8] A study of the interactions between uniform and pointwise vortices in an inviscid fluid
    Riccardi, Giorgio
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2016, 7 (01) : 4 - 22
  • [9] Dynamics of symplectic fluids and point vortices
    Boris Khesin
    Geometric and Functional Analysis, 2012, 22 : 1444 - 1459
  • [10] Stochastic properties of a system of point vortices
    Rudyak, VY
    Bord, EG
    Kranchev, DF
    TECHNICAL PHYSICS LETTERS, 2004, 30 (03) : 225 - 227