Performance of pedigree and various forms of marker-derived relationship coefficients in genomic prediction and their correlations

被引:1
|
作者
Solaymani, Samaneh [1 ]
Mehrgardi, Ahmad Ayatollahi [1 ]
Esmailizadeh, Ali [1 ]
Tusell, Llibertat [2 ]
Momen, Mehdi [1 ,3 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Agr, Dept Anim Sci, Kerman 3433257443, Iran
[2] INRA, UMR1388, INPT ENSAT, INPT,ENVT GenPhySE, Castanet Tolosan, France
[3] Univ Wisconsin, Sch Vet Med, Dept Surg Sci, Comparat Orthopaed Res Lab, Madison, WI 53706 USA
关键词
Bayesian multiple-trait genome-enabled prediction; genetic parameters; marker-based relationship matrix; HILBERT-SPACES REGRESSION; RELATIONSHIP MATRIX; ENABLED PREDICTION; GENETIC VALUES; PAIRWISE RELATEDNESS; ASSISTED PREDICTION; MOLECULAR MARKERS; HERITABILITY; ASSOCIATION; MODELS;
D O I
10.1111/jbg.12467
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
In recent years, with development and validation of different genotyping panels, several methods have been proposed to build efficient similarity matrices among individuals to be used for genomic selection. Consequently, the estimated genetic parameters from such information may deviate from their counterpart using traditional family information. In this study, we used a pedigree-based numerator relationship matrix (A) and three types of marker-based relationship matrices (G) including two identical by descent, that is GK and GM and one identical by state, GV as well as four Gaussian kernel (GK) similarity kernels with different smoothing parameters to predict yet to be observed phenotypes. Also, we used different kinship matrices that are a linear combination of marker-derived IBD or IBS matrices with A, constructed as K=lambda G+<mml:mfenced close= open=separators=1-lambda A, where the weight (lambda) assigned to each source of information varied over a grid of values. A Bayesian multiple-trait Gaussian model was fitted to estimate the genetic parameters and compare the prediction accuracy in terms of predictive correlation, mean square error and unbiasedness. Results show that the estimated genetic parameters (heritability and correlations) are affected by the source of the information used to create kinship or the weight placed on the sources of genomic and pedigree information. The superiority of GK-based model depends on the smoothing parameters (theta) so that with an optimum theta value, the GK-based model statistically yielded better performance (higher predictive correlation, lowest MSE and unbiased estimates) and more stable correlations and heritability than the model with IBD, IBS or A kinship matrices or any of the linear combinations.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 21 条
  • [1] Technical note: Prediction of breeding values using marker-derived relationship matrices
    Hayes, B. J.
    Goddard, M. E.
    JOURNAL OF ANIMAL SCIENCE, 2008, 86 (09) : 2089 - 2092
  • [2] Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix
    Zhang, Zhe
    Liu, Jianfeng
    Ding, Xiangdong
    Bijma, Piter
    de Koning, Dirk-Jan
    Zhang, Qin
    PLOS ONE, 2010, 5 (09): : 1 - 8
  • [3] Estimates of Genomic Heritability and the Marker-Derived Gene for Re(Production) Traits in Xinggao Sheep
    Liu, Zaixia
    Fu, Shaoyin
    He, Xiaolong
    Liu, Xuewen
    Shi, Caixia
    Dai, Lingli
    Wang, Biao
    Chai, Yuan
    Liu, Yongbin
    Zhang, Wenguang
    GENES, 2023, 14 (03)
  • [4] Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle
    Maurício A. Mudadu
    Laercio R. Porto-Neto
    Fabiana B. Mokry
    Polyana C. Tizioto
    Priscila S. N. Oliveira
    Rymer R. Tullio
    Renata T. Nassu
    Simone C. M. Niciura
    Patrícia Tholon
    Maurício M. Alencar
    Roberto H. Higa
    Antônio N. Rosa
    Gélson L. D. Feijó
    André L. J. Ferraz
    Luiz O. C. Silva
    Sérgio R. Medeiros
    Dante P. Lanna
    Michele L. Nascimento
    Amália S. Chaves
    Andrea R. D. L. Souza
    Irineu U. Packer
    Roberto A. A. Torres
    Fabiane Siqueira
    Gerson B. Mourão
    Luiz L. Coutinho
    Antonio Reverter
    Luciana C. A. Regitano
    BMC Genomics, 17
  • [5] Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle
    Mudadu, Mauricio A.
    Porto-Neto, Laercio R.
    Mokry, Fabiana B.
    Tizioto, Polyana C.
    Oliveira, Priscila S. N.
    Tullio, Rymer R.
    Nassu, Renata T.
    Niciura, Simone C. M.
    Tholon, Patricia
    Alencar, Mauricio M.
    Higa, Roberto H.
    Rosa, Antonio N.
    Feijo, Gelson L. D.
    Ferraz, Andre L. J.
    Silva, Luiz O. C.
    Medeiros, Sergio R.
    Lanna, Dante P.
    Nascimento, Michele L.
    Chaves, Amalia S.
    Souza, Andrea R. D. L.
    Packer, Irineu U.
    Torres, Roberto A. A., Jr.
    Siqueira, Fabiane
    Mourao, Gerson B.
    Coutinho, Luiz L.
    Reverter, Antonio
    Regitano, Luciana C. A.
    BMC GENOMICS, 2016, 17
  • [6] Erratum to: ‘Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle’
    Maurício A. Mudadu
    Laercio R. Porto-Neto
    Fabiana B. Mokry
    Polyana C. Tizioto
    Priscila S. N. Oliveira
    Rymer R. Tullio
    Renata T. Nassu
    Simone C. M. Niciura
    Patrícia Tholon
    Maurício M. Alencar
    Roberto H. Higa
    Antônio N. Rosa
    Gélson L. D. Feijó
    André L. J. Ferraz
    Luiz O. C. Silva
    Sérgio R. Medeiros
    Dante P. Lanna
    Michele L. Nascimento
    Amália S. Chaves
    Andrea R. D. L. Souza
    Irineu U. Packer
    Roberto A. A. Torres
    Fabiane Siqueira
    Gerson B. Mourão
    Luiz L. Coutinho
    Antonio Reverter
    Luciana C. A. Regitano
    BMC Genomics, 17
  • [7] Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle (vol 17, 235, 2016)
    Mudadu, Maurcio A.
    Porto-Neto, Laercio R.
    Mokry, Fabiana B.
    Tizioto, Polyana C.
    Oliveira, Priscila S. N.
    Tullio, Rymer R.
    Nassu, Renata T.
    Niciura, Simone C. M.
    Tholon, Patricia
    Alencar, Mauricio M.
    Higa, Roberto H.
    Rosa, Antonio N.
    Feijo, Gelson L. D.
    Ferraz, Andre L. J.
    Silva, Luiz O. C.
    Medeiros, Sergio R.
    Lanna, Dante P.
    Nascimento, Michele L.
    Chaves, Amalia S.
    Souza, Andrea R. D. L.
    Packer, Irineu U.
    Torres, Roberto A. A., Jr.
    Siqueira, Fabiane
    Mourao, Gerson B.
    Coutinho, Luiz L.
    Reverter, Antonio
    Regitano, Luciana C. A.
    BMC GENOMICS, 2016, 17
  • [8] Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
    Barjasteh, S.
    Dashab, G. R.
    Rokouei, M.
    Shariati, M. M.
    Valleh, M. Vafaye
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2020, 10 (02): : 231 - 239
  • [9] Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat
    Krause, Margaret R.
    Gonzalez-Perez, Lorena
    Crossa, Jose
    Perez-Rodriguez, Paulino
    Montesinos-Lopez, Osval
    Singh, Ravi P.
    Dreisigacker, Susanne
    Poland, Jesse
    Rutkoski, Jessica
    Sorrells, Mark
    Gore, Michael A.
    Mondal, Suchismita
    G3-GENES GENOMES GENETICS, 2019, 9 (04): : 1231 - 1247
  • [10] Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects
    Technow, Frank
    Riedelsheimer, Christian
    Schrag, Tobias A.
    Melchinger, Albrecht E.
    THEORETICAL AND APPLIED GENETICS, 2012, 125 (06) : 1181 - 1194