Characterization of Weight-Semi-greedy Bases

被引:4
作者
Berna, Pablo Manuel [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Thresholding greedy algorithm; Weight-almost-greedy bases; Semi-greedy bases; ALGORITHM;
D O I
10.1007/s00041-020-09727-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One classical result in greedy approximation theory is that almost-greedy and semi-greedy bases are equivalent in the context of Schauder bases in Banach spaces with finite cotype. This result was proved by Dilworth et al. (Studia Math 159:67-101, 2003) and, recently, in the study of Berna (J Math Anal Appl 470:218-225, 2019), the author proved that the condition of finite cotype can be removed. One of the results in this paper is to show that the condition of Schauder can be relaxed using the rho-admissibility, notion introduced in the study of Berna et al. (Rev Mat Complut; https://doi.org/10.1007/s13163-019-00328-9). On the other hand, in the study of Dilworth et al. (Tr Mat Inst Steklova 303: 120-141, 2018), the authors extend the notion of semi-greediness to the context of weights and proved the following: if w is a weight and B is a Schauder basis in a Banach space Xwith finite cotype, then w-semi-greediness and w-almost-greediness are equivalent notions. Here, we prove the same characterization but removing the condition of finite cotype. Also, we give some results improving the behavior of some constants in the relation between w-greedy-type bases and some w-democracy properties.
引用
收藏
页数:21
相关论文
共 17 条
  • [1] Characterization of 1-almost greedy bases
    Albiac, F.
    Ansorena, J. L.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (01): : 13 - 24
  • [2] Lebesgue inequalities for Chebyshev thresholding greedy algorithms
    Berna, P. M.
    Blasco, O.
    Garrigos, G.
    Hernandez, E.
    Oikhberg, T.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 695 - 722
  • [3] The weighted property (A) and the greedy algorithm
    Berna, P. M.
    Dilworth, S. J.
    Kutzarova, D.
    Oikhberg, T.
    Wallis, B.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2019, 248
  • [4] Equivalence between almost-greedy and semi-greedy bases
    Berna, P. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 218 - 225
  • [5] Lebesgue inequalities for the greedy algorithm in general bases
    Berna, Pablo M.
    Blasco, Oscar
    Garrigos, Gustavo
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (02): : 369 - 392
  • [6] Restricted nonlinear approximation
    Cohen, A
    DeVore, RA
    Hochmuth, R
    [J]. CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) : 85 - 113
  • [7] Dilworth SJ, 2018, P STEKLOV I MATH+, V303, P109, DOI [10.1134/S0081543818080102, 10.1134/S0371968518040106]
  • [8] Lebesgue constants for the weak greedy algorithm
    Dilworth, S. J.
    Kutzarova, D.
    Oikhberg, T.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02): : 393 - 409
  • [9] On the existence of almost greedy bases in Banach spaces
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 67 - 101
  • [10] The thresholding greedy algorithm, greedy bases, and duality
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    Temlyakov, VN
    [J]. CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) : 575 - 597