Histone chaperones: an escort network regulating histone traffic

被引:276
作者
De Koning, Leanne
Corpet, Armelle
Haber, James E.
Almouzni, Genevieve
机构
[1] Inst Curie, Lab Nucl Dynam & Genome Plast, UMR 218, F-75248 Paris, France
[2] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[3] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA
关键词
STRAND BREAK REPAIR; RNA-POLYMERASE-II; NUCLEOSOME ASSEMBLY PROTEIN-1; TRANSCRIPTION ELONGATION-FACTORS; H3; LYSINE-56; ACETYLATION; DNA-REPLICATION INVITRO; ACTIN-RELATED PROTEIN; XENOPUS EGG EXTRACTS; CHROMATIN-STRUCTURE; SACCHAROMYCES-CEREVISIAE;
D O I
10.1038/nsmb1318
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.
引用
收藏
页码:997 / U1
页数:12
相关论文
共 50 条
[31]   Unlocking the potential of histone modification in regulating bone metabolism [J].
Zhang, Jiayuan ;
Liu, Hanghang ;
Liu, Yao ;
Luo, En ;
Liu, Shibo .
BIOCHIMIE, 2024, 227 :286-298
[32]   Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors [J].
Sato, Lui ;
Noguchi, Shuhei ;
Hayashi, Yohei ;
Sakamoto, Makoto ;
Horikoshi, Masami .
GENES TO CELLS, 2010, 15 (06) :553-594
[33]   Epigenetic moonlighting: Catalytic-independent functions of histone modifiers in regulating transcription [J].
Morgan, Marc A. J. ;
Shilatifard, Ali .
SCIENCE ADVANCES, 2023, 9 (16)
[34]   Histone acetylation and histone deacetylation [J].
Kazuhiro Ito ;
Ian M. Adcock .
Molecular Biotechnology, 2002, 20 :99-106
[35]   Histone acetylation and histone deacetylation [J].
Ito, K ;
Adcock, IM .
MOLECULAR BIOTECHNOLOGY, 2002, 20 (01) :99-106
[36]   The FACT Histone Chaperone Guides Histone H4 Into Its Nucleosomal Conformation in Saccharomyces cerevisiae [J].
McCullough, Laura ;
Poe, Bryan ;
Connell, Zaily ;
Xin, Hua ;
Formosa, Tim .
GENETICS, 2013, 195 (01) :101-113
[37]   All roads lead to chromatin: Multiple pathways for histone deposition [J].
Li, Qing ;
Burgess, Rebecca ;
Zhang, Zhiguo .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (3-4) :238-246
[38]   The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations [J].
Jeronimo, Celia ;
Watanabe, Shinya ;
Kaplan, Craig D. ;
Peterson, Craig L. ;
Robert, Francois .
MOLECULAR CELL, 2015, 58 (06) :1113-1123
[39]   Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network [J].
Hayashi, Yohei ;
Senda, Toshiya ;
Sano, Norihiko ;
Horikoshi, Masami .
GENES TO CELLS, 2009, 14 (07) :789-806
[40]   Structure and function of histone chaperone FACT [J].
Bondarenko, M. T. ;
Maluchenko, N. V. ;
Valieva, M. E. ;
Gerasimova, N. S. ;
Kulaeva, O. I. ;
Georgiev, P. G. ;
Studitsky, V. M. .
MOLECULAR BIOLOGY, 2015, 49 (06) :796-809