Green light stimulates terahertz emission from mesocrystal microspheres

被引:127
作者
Wu, X. L. [1 ,2 ]
Xiong, S. J. [1 ,2 ]
Liu, Z. [1 ,2 ]
Chen, J. [1 ,3 ]
Shen, J. C. [1 ,2 ]
Li, T. H. [1 ,2 ]
Wu, P. H. [1 ,3 ]
Chu, Paul K. [4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Res Inst Superconductor Elect, Nanjing 210093, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
NANOCRYSTALS; ZNO; CRYSTALLIZATION; NANOSTRUCTURES; DEPENDENCE; INTERFACE; SIZE;
D O I
10.1038/nnano.2010.264
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The discovery of efficient sources of terahertz radiation has been exploited in imaging applications(1), and developing a nanoscale terahertz source could lead to additional applications. High-frequency mechanical vibrations of charged nanostructures can lead to radiative emission, and vibrations at frequencies of hundreds of kilohertz have been observed from a ZnO nanobelt under the influence of an alternating electric field(2). Here, we observe mechanical resonance and radiative emission at similar to 0.36 THz from core-shell ZnO mesocrystal microspheres excited by a continuous green-wavelength laser. We find that similar to 0.016% of the incident power is converted into terahertz radiation, which corresponds to a quantum efficiency of similar to 33%, making the ZnO microspheres competitive with existing terahertz-emitting materials(1,3). The mechanical resonance and radiation stem from the coherent photoinduced vibration of the hexagonal ZnO nanoplates that make up the microsphere shells. The ZnO microspheres are formed by means of a nonclassical, self-organized crystallization process(4-6), and represent a straightforward route to terahertz radiation at the nanoscale.
引用
收藏
页码:102 / 105
页数:4
相关论文
共 27 条
[1]   Dual-mode mechanical resonance of individual ZnO nanobelts [J].
Bai, XD ;
Gao, PX ;
Wang, ZL ;
Wang, EG .
APPLIED PHYSICS LETTERS, 2003, 82 (26) :4806-4808
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations [J].
Cao, Guoxin ;
Chen, Xi .
PHYSICAL REVIEW B, 2007, 76 (16)
[4]   Imaging with terahertz radiation [J].
Chan, Wai Lam ;
Deibel, Jason ;
Mittleman, Daniel M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) :1325-1379
[5]   Mesocrystals:: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J].
Cölfen, H ;
Antonietti, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (35) :5576-5591
[6]  
Colfen H., 2008, MESOCRYSTALS NONCLAS
[7]   Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals [J].
Courty, A ;
Mermet, A ;
Albouy, PA ;
Duval, E ;
Pileni, MP .
NATURE MATERIALS, 2005, 4 (05) :395-398
[8]   3C-SiC nanocrystals as fluorescent biological labels [J].
Fan, Jiyang ;
Li, Hongxia ;
Iiang, Jiang ;
So, Leo K. Y. ;
Lam, Yun Wah ;
Chu, Paul K. .
SMALL, 2008, 4 (08) :1058-1062
[9]   Light-emitting porous silicon: Materials science, properties, and device applications [J].
Fauchet, PM ;
Tsybeskov, L ;
Peng, C ;
Duttagupta, SP ;
vonBehren, J ;
Kostoulas, Y ;
Vandyshev, JMV ;
Hirschman, KD .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1995, 1 (04) :1126-1139