Control of transversal instabilities in reaction-diffusion systems

被引:4
|
作者
Totz, Sonja [1 ,2 ]
Loeber, Jakob [3 ,4 ]
Totz, Jan Frederik [4 ]
Engel, Harald [4 ]
机构
[1] Potsdam Inst Climate Impact Res, Telegrafenberg A61, D-14473 Potsdam, Germany
[2] Univ Potsdam, Dept Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[4] Tech Univ Berlin, Inst Theoret Phys, EW 7-1,Hardenbergstr 36, D-10623 Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
traveling waves; control; transversal instabilities; AUTOCATALYTIC REACTION FRONTS; LATERAL INSTABILITIES; PATTERN-FORMATION; WAVE-PROPAGATION; EXCITABLE MEDIUM; MEDIA; CURVATURE; DYNAMICS; VELOCITY; GROWTH;
D O I
10.1088/1367-2630/aabce5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Instabilities in hyperbolic reaction-diffusion system with cross diffusion and species-dependent inertia
    Ghorai, Santu
    Bairagi, Nandadulal
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [32] Instabilities and propagation properties in a fourth-order reaction-diffusion equation
    Shamseldeen, Samir A.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 231 : 395 - 406
  • [33] Concentration-Dependent Domain Evolution in Reaction-Diffusion Systems
    Krause, Andrew L.
    Gaffney, Eamonn A.
    Walker, Benjamin J.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2023, 85 (02)
  • [34] Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure
    Balasuriya, Sanjeeva
    Gottwald, Georg A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (03) : 377 - 399
  • [35] An analytical velocity field of spiral tips in reaction-diffusion systems
    Pan, De-Bei
    Li, Bing-Wei
    Pan, Jun-Ting
    Li, Qi-Hao
    Zhang, Hong
    NEW JOURNAL OF PHYSICS, 2020, 22 (10)
  • [36] RANDOM ATTRACTORS AND ROBUSTNESS FOR STOCHASTIC REVERSIBLE REACTION-DIFFUSION SYSTEMS
    You, Yuncheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (01) : 301 - 333
  • [37] A theory of pattern formation for reaction-diffusion systems on temporal networks
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2247):
  • [38] Bistability, wave pinning and localisation in natural reaction-diffusion systems?
    Champneys, Alan R.
    Al Saadi, Fahad
    Brena-Medina, Victor F.
    Grieneisen, Veronica A.
    Maree, Athanasius F. M.
    Verschueren, Nicolas
    Wuyts, Bert
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 416
  • [39] INTERFACE OSCILLATIONS IN REACTION-DIFFUSION SYSTEMS ABOVE THE HOPF BIFURCATION
    McKay, Rebecca
    Kolokolnikov, Theodore
    Muir, Paul
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07): : 2523 - 2543
  • [40] Preface to the Issue Nonlocal Reaction-Diffusion Equations
    Alfaro, M.
    Apreutesei, N.
    Davidson, F.
    Volpert, V.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2015, 10 (06) : 1 - 5