Control of transversal instabilities in reaction-diffusion systems

被引:4
|
作者
Totz, Sonja [1 ,2 ]
Loeber, Jakob [3 ,4 ]
Totz, Jan Frederik [4 ]
Engel, Harald [4 ]
机构
[1] Potsdam Inst Climate Impact Res, Telegrafenberg A61, D-14473 Potsdam, Germany
[2] Univ Potsdam, Dept Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[4] Tech Univ Berlin, Inst Theoret Phys, EW 7-1,Hardenbergstr 36, D-10623 Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
traveling waves; control; transversal instabilities; AUTOCATALYTIC REACTION FRONTS; LATERAL INSTABILITIES; PATTERN-FORMATION; WAVE-PROPAGATION; EXCITABLE MEDIUM; MEDIA; CURVATURE; DYNAMICS; VELOCITY; GROWTH;
D O I
10.1088/1367-2630/aabce5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Instabilities in cubic reaction-diffusion fronts advected by a Poiseuille flow
    Llamoca, Edwin A.
    Vilela, P. M.
    Vasquez, Desiderio A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03) : 505 - 511
  • [22] Moving Finite Element Simulations for Reaction-Diffusion Systems
    Hu, Guanghui
    Qiao, Zhonghua
    Tang, Tao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (03) : 365 - 381
  • [23] EFFECTIVE ROUGH BOUNDARY PARAMETRIZATION FOR REACTION-DIFFUSION SYSTEMS
    Mocenni, C.
    Sparacino, E.
    Zubelli, J. P.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2014, 8 (01) : 33 - 59
  • [24] Wavelength Selection by Interrupted Coarsening in Reaction-Diffusion Systems
    Brauns, Fridtjof
    Weyer, Henrik
    Halatek, Jacob
    Yoon, Junghoon
    Frey, Erwin
    PHYSICAL REVIEW LETTERS, 2021, 126 (10)
  • [25] Spiking at the edge: Excitability at interfaces in reaction-diffusion systems
    Scheibner, Colin
    Ori, Hillel
    Cohen, Adam E.
    Vitelli, Vincenzo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (03)
  • [26] Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems
    Krause, Andrew L.
    Klika, Vaclav
    Woolley, Thomas E.
    Gaffney, Eamonn A.
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [27] CONTROL OF REACTION-DIFFUSION MODELS IN BIOLOGY AND SOCIAL SCIENCES
    Ruiz-Balet, Domenec
    Zuazua, Enrique
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, : 955 - 1038
  • [28] WAVE PHENOMENA IN REACTION-DIFFUSION SYSTEMS
    Steinbock, Oliver
    Engel, Harald
    ENGINEERING OF CHEMICAL COMPLEXITY, 2013, 11 : 147 - 167
  • [29] Optimal control of spatial diseases spreading in networked reaction-diffusion systems
    Sun, Gui-Quan
    He, Runzi
    Hou, Li-Feng
    Luo, Xiaofeng
    Gao, Shupeng
    Chang, Lili
    Wang, Yi
    Zhang, Zi-Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2025, 1111 : 1 - 64
  • [30] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):