Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion

被引:77
作者
Kempf, A. [1 ,2 ]
Hilgenberg, K. [2 ,3 ]
机构
[1] Volkswagen AG, Mat Technol, Berliner Ring 2, D-38440 Wolfsburg, Germany
[2] Tech Univ Berlin, Inst Machine Tools & Factory Management, Pascalstr 8-9, D-10587 Berlin, Germany
[3] Fed Inst Mat Res & Testing, Unter Eichen 87, D-12205 Berlin, Germany
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2020年 / 776卷
关键词
Laser powder bed fusion; Ring trial; AlSi10Mg; Microstructure; Mechanical properties; Heat treatment; MELTED ALSI10MG; HEAT-TREATMENT; MICROSTRUCTURE EVOLUTION; PROCESS OPTIMIZATION; ALLOY; ALUMINUM; BEHAVIOR; FATIGUE; SLM; PRECIPITATION;
D O I
10.1016/j.msea.2020.138976
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
AlSi10Mg is one of the most applied alloys for laser powder bed fusion (LPBF) technology, due to its great possibilities for implementing new lightweight concepts such as in automotive industries. For the component design it is necessary to know about the mechanical properties and the mechanical behaviour. The many published strength properties of LPBF processed AlSi10Mg show significant differences up to approximately 225 MPa in ultimate tensile strength (UTS) and 195 MPa in yield strength (YS). To understand these varying properties, a ring trial was carried out manufacturing specimens on 6 LPBF machines with different parameters and build-up strategies. They were studied in the as-built (AB) condition and after heat treatment at 300 degrees C for 30 min, respectively. For examining the mechanical properties, tensile tests and hardness measurements were carried out. The microstructure was characterized by optical light microscopy (OM), field emission scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The identified differences in strength properties were discussed based on the 4 strengthening mechanism known for metallic materials and at the background of material defects. It was found that the size of the typical sub-cell structure of LPBF AlSi10Mg affected substantially the mechanical properties in the AB condition, in which with decreasing sub-cell size strength increased. If heat treatment was applied, the strength properties decreased and did not differ anymore. Since annealing led to coarsened sub-cells, whereas the grains itself did not change in size, the influence of sub-cell structure on strength was further confirmed. In addition, acicular precipitates in the AB condition were observed at specimens from one LPBF machine showing the lowest tensile elongation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multipass Friction Stir Processing of Laser-Powder Bed Fusion AlSi10Mg: Microstructure and Mechanical Properties
    Heidarzadeh, Akbar
    Khorshidi, Mahsa
    Mohammadzadeh, Roghayeh
    Khajeh, Rasoul
    Mofarrehi, Mohammadreza
    Javidani, Mousa
    Chen, X. -Grant
    MATERIALS, 2023, 16 (04)
  • [32] Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere
    Yunmian Xiao
    Yongqiang Yang
    Shibiao Wu
    Jie Chen
    Di Wang
    Changhui Song
    Acta Metallurgica Sinica (English Letters), 2022, 35 : 486 - 500
  • [33] Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties
    Yang, Tao
    Liu, Tingting
    Liao, Wenhe
    MacDonald, Eric
    Wei, Huiliang
    Zhang, Changdong
    Chen, Xiangyuan
    Zhang, Kai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 849
  • [34] Laser powder bed fusion of oxidized microscale SiC-particle-reinforced AlSi10Mg matrix composites: Microstructure, porosity, and mechanical properties
    Chen, Yan
    Ren, Yongming
    Li, Kan
    Dang, Bo
    Jian, Zengyun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 870
  • [35] Deciphering phase stress partition and its correlation to mechanical anisotropy of laser powder bed fusion AlSi10Mg
    Song, Lubin
    Yuan, Shulin
    Zhao, Lv
    Zhu, Yaxin
    Liang, Shuang
    Huang, Minsheng
    Simar, Aude
    Li, Zhenhuan
    ADDITIVE MANUFACTURING, 2023, 71
  • [36] A review on the fatigue behaviour of AlSi10Mg alloy fabricated using laser powder bed fusion technique
    Raja, A.
    Cheethirala, Srinivasa Rakesh
    Gupta, Pallavi
    Vasa, Nilesh J.
    Jayaganthan, R.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 1013 - 1029
  • [37] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [38] Laser-powder bed fusion process optimisation of AlSi10Mg using extra trees regression
    Minkowitz, Lisa
    Arneitz, Siegfried
    Effertz, Pedro S.
    Amancio-Filho, Sergio T.
    MATERIALS & DESIGN, 2023, 227
  • [39] Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
    Del Re, Francesco
    Scherillo, Fabio
    Contaldi, Vincenzo
    Palumbo, Biagio
    Squillace, Antonino
    Corrado, Pasquale
    Di Petta, Paolo
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2019, 110 (05) : 436 - 446
  • [40] Sustainable production of AlSi10Mg parts by laser powder bed fusion process
    Mercurio, Vincenza
    Calignano, Flaviana
    Iuliano, Luca
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 125 (7-8) : 3117 - 3133