Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices

被引:60
作者
Foster, KA [1 ]
Beaver, CJ [1 ]
Turner, DA [1 ]
机构
[1] Duke Univ, Med Ctr, Durham Vet Affairs Med Ctr, Res & Surg Serv, Durham, NC 27710 USA
关键词
NADH; hypoxia; oxygen tension; metabolism; synaptic physiology; mitochondria;
D O I
10.1016/j.neuroscience.2005.01.040
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Oxygen and NADH are essential components in the production of ATP in the CNS. This study examined the dynamic interaction between tissue oxygen tension (pO(2)) and NADH imaging changes within hippocampal tissue slices, during metabolic stresses including hypoxia and synaptic activation. The initiation of abrupt hypoxia (from 95% O-2 to 95% N-2) caused a rapid decrease in pO(2), onset of hypoxic spreading depression (hsd; at 6.7 +/- 1.3 mm Hg; n=15), and a monophasic increase in NADH. Provided that reoxygenation was prompt, synaptic responses, pO(2) and NADH levels returned to baseline following hsd. Longer hypoxia caused irreversible neuronal dysfunction, an increase in pO(2) beyond baseline (due to decreased tissue demand), and hyperoxidation of NADH (10 +/- 2% decrease below baseline; n=7). Synaptic activation in ambient 95% O-2 caused a decrease or 'initial dip' in pO(2) and a biphasic NADH response (oxidation followed by reduction). The oxidizing phase of the NADH response was mitochondrial as it was synchronous with the 'initial' dip in pO(2). Following slow graded reductions in ambient oxygen levels to 8%, four of seven slices developed hsd following synaptic stimulation. The hypoxic threshold for graded oxygen reductions occurred at 7.9 +/- 5.8 mm Hg O-2 (n=7). Our hypoxic threshold range (6.7-7.9 mm Hg O-2 from abrupt and graded oxygen reduction, respectively) correlates well with reported in vivo values of < 12 mm Hg O-2. The major findings of this study include: 1) determination of the critical physiological threshold of pO(2) (based upon hsd), which is a marker of imminent neuronal death if oxygen is not rapidly restored; 2) NADH hyperoxidation and an increase in pO(2) beyond baseline levels following longer periods of hypoxia; and 3) the occurrence of a pO(2) 'dip' during synaptic stimulation, which correlates with the early oxidizing phase of the biphasic NADH response. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 49 条
  • [1] Similar propagation of SD and hypoxic SD-like depolarization in rat hippocampus recorded optically and electrically
    Aitken, PG
    Tombaugh, GC
    Turner, DA
    Somjen, GG
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (03) : 1514 - 1521
  • [2] Bahar S, 2000, J NEUROPHYSIOL, V84, P311
  • [3] POLAROGRAPHIC-DETERMINATION OF OXYGEN PARTIAL-PRESSURE FIELD BY PT MICROELECTRODES USING O2 FIELD IN FRONT OF A PT MACROELECTRODE AS A MODEL
    BAUMGARTL, H
    GRUNEWALD, W
    LUBBERS, DW
    [J]. PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1974, 347 (01): : 49 - 61
  • [4] BEAVER CJ, 2003, VIEWERITENEARY PLANN
  • [5] INTRACELLULAR OXIDATION- REDUCTION STATES IN VIVO
    CHANCE, B
    JOBSIS, F
    SCHOENER, B
    COHEN, P
    [J]. SCIENCE, 1962, 137 (3529) : 499 - &
  • [6] DEFINING HYPOXIA - A SYSTEMS VIEW OF VO2, GLYCOLYSIS, ENERGETICS, AND INTRACELLULAR PO-2
    CONNETT, RJ
    HONIG, CR
    GAYESKI, TEJ
    BROOKS, GA
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 1990, 68 (03) : 833 - 842
  • [7] OPTICAL-PROPERTIES OF HUMAN-BRAIN TISSUE, MENINGES, AND BRAIN-TUMORS IN THE SPECTRAL RANGE OF 200 TO 900 NM
    EGGERT, HR
    BLAZEK, V
    [J]. NEUROSURGERY, 1987, 21 (04) : 459 - 464
  • [8] Tissue oxygen tension and brain sensitivity to hypoxia
    Erecinska, M
    Silver, IA
    [J]. RESPIRATION PHYSIOLOGY, 2001, 128 (03): : 263 - 276
  • [9] FATT I, 1976, POLAROGRAPHIC OXYGEN
  • [10] Two different mechanisms underlie reversible, intrinsic optical signals in rat hippocampal slices
    Fayuk, D
    Aitken, PG
    Somjen, GG
    Turner, DA
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (04) : 1924 - 1937