Weight functions and drinfeld currents

被引:41
作者
Enriquez, B.
Khoroshkin, S.
Pakuliak, S.
机构
[1] CNRS, IRMA, F-67084 Strasbourg, France
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Joint Inst Nucl Res Dubna, Phys Theor Lab, Dubna 141980, Russia
关键词
D O I
10.1007/s00220-007-0351-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal weight function for a quantum affine algebra is a family of functions with values in a quotient of its Borel subalgebra, satisfying certain coalgebraic properties. In representations of the quantum affine algebra it gives off-shell Bethe vectors and is used in the construction of solutions of the qKZ equations. We construct a universal weight function for each untwisted quantum affine algebra, using projections onto the intersection of Borel subalgebras of different types, and study its functional properties.
引用
收藏
页码:691 / 725
页数:35
相关论文
共 32 条
[1]   Resolution of the nested hierarchy for rational sl(n) models [J].
Albert, TD ;
Boos, H ;
Flume, R ;
Ruhlig, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :4963-4980
[2]   OFF-SHELL BETHE-ANSATZ EQUATION FOR GAUDIN MAGNETS AND SOLUTIONS OF KNIZHNIK-ZAMOLODCHIKOV EQUATIONS [J].
BABUJIAN, HM ;
FLUME, R .
MODERN PHYSICS LETTERS A, 1994, 9 (22) :2029-2039
[3]   CONVEX BASES OF PBW TYPE FOR QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :193-199
[4]  
Chari V., 1995, Representations of groups, V16, P59
[5]   The R-matrix for non-twisted affine quantum algebras [J].
Damiani, I .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (04) :493-523
[6]   Weyl group extension of quantized current algebras [J].
Ding, J ;
Khoroshkin, S .
TRANSFORMATION GROUPS, 2000, 5 (01) :35-59
[7]   Integral presentations for the universal R-matrix [J].
Ding, J ;
Khoroshkin, S ;
Pakuliak, S .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (02) :121-141
[8]  
Ding J, 2000, THEOR MATH PHYS+, V124, P1007, DOI 10.1007/BF02551074
[9]   ISOMORPHISM OF 2 REALIZATIONS OF QUANTUM AFFINE ALGEBRA UQ(GL(N))OVER-CAP [J].
DING, J ;
FRENKEL, IB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (02) :277-300
[10]  
Drinfeld V. G., 1988, Soviet Math. Dokl, V296, P212