Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays

被引:46
作者
Boehm, Ryan D. [1 ,2 ]
Jaipan, Panupong [3 ]
Skoog, Shelby A. [1 ,2 ]
Stafslien, Shane [4 ]
VanderWal, Lyndsi [4 ]
Narayan, Roger J. [1 ,2 ,3 ]
机构
[1] Univ N Carolina, Joint Dept Biomed Engn, Box 7115, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Box 7115, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Dept Mat Sci Engn, Box 7907, Raleigh, NC 27695 USA
[4] N Dakota State Univ, Ctr Nanoscale Sci & Engn, 1805 Res Pk Dr, Fargo, ND 58102 USA
基金
美国国家科学基金会;
关键词
AMPHOTERICIN-B; COCONUT OIL; PHARMACOKINETICS; ALCOHOLYSIS; FORMULATION; STABILITY; EFFICACY; SYSTEM;
D O I
10.1116/1.4941448
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Poly(glycolic acid) microneedle arrays were fabricated using a drawing lithography process; these arrays were modified with a drug release agent and an antifungal agent by piezoelectric inkjet printing. Coatings containing poly(methyl vinyl ether-co-maleic anhydride), a water-soluble drug release layer, and itraconazole (an antifungal agent), were applied to the microneedles by piezoelectric inkjet printing. Microscopic evaluation of the microneedles indicated that the modified microneedles contained the piezoelectric inkjet printing-deposited agents and that the surface coatings were released in porcine skin. Energy dispersive x-ray spectrometry aided in confirmation that the piezoelectric inkjet printing-deposited agents were successfully applied to the desired target areas of the microneedle surface. Fourier transform infrared spectroscopy was used to confirm the presence of the component materials in the piezoelectric inkjet printing-deposited material. Itraconazole-modified microneedle arrays incubated with agar plates containing Candida albicans cultures showed zones of growth inhibition. (C) 2016 American Vacuum Society.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
Agero Anna Liza C, 2004, Dermatitis, V15, P109, DOI 10.2310/6620.2004.04006
[2]   Preformulation studies of itraconazole associated with benznidazole and pharmaceutical excipients [J].
Alves-Silva, I. ;
Sa-Barreto, L. C. L. ;
Lima, E. M. ;
Cunha-Filho, M. S. S. .
THERMOCHIMICA ACTA, 2014, 575 :29-33
[3]  
Antohe B. V., 2008, P 2008 INT MAN SCI E
[4]  
BANZON J A, 1980, Philippine Journal of Coconut Studies, V5, P47
[5]   ITRACONAZOLE FOR EXPERIMENTAL PULMONARY ASPERGILLOSIS - COMPARISON WITH AMPHOTERICIN-B, INTERACTION WITH CYCLOSPORINE-A, AND CORRELATION BETWEEN THERAPEUTIC RESPONSE AND ITRACONAZOLE CONCENTRATIONS IN PLASMA [J].
BERENGUER, J ;
ALI, NM ;
ALLENDE, MC ;
LEE, J ;
GARRETT, K ;
BATTAGLIA, S ;
PISCITELLI, SC ;
RINALDI, MG ;
PIZZO, PA ;
WALSH, TJ .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (06) :1303-1308
[6]   Modification of microneedles using inkjet printing [J].
Boehm, R. D. ;
Miller, P. R. ;
Hayes, S. L. ;
Monteiro-Riviere, N. A. ;
Narayan, R. J. .
AIP ADVANCES, 2011, 1 (02)
[7]   Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings [J].
Boehm, Ryan D. ;
Daniels, Justin ;
Stafslien, Shane ;
Nasir, Adnan ;
Lefebvre, Joe ;
Narayan, Roger J. .
BIOINTERPHASES, 2015, 10 (01)
[8]   Inkjet printing for pharmaceutical applications [J].
Boehm, Ryan D. ;
Miller, Philip R. ;
Daniels, Justin ;
Stafslien, Shane ;
Narayan, Roger J. .
MATERIALS TODAY, 2014, 17 (05) :247-252
[9]   Inkjet Printing of Amphotericin B onto Biodegradable Microneedles Using Piezoelectric Inkjet Printing [J].
Boehm, Ryan D. ;
Miller, Philip R. ;
Schell, Wiley A. ;
Perfect, John R. ;
Narayan, Roger J. .
JOM, 2013, 65 (04) :525-533
[10]   Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles [J].
Boehm, Ryan D. ;
Miller, Philip R. ;
Singh, Ritika ;
Shah, Akash ;
Stafslien, Shane ;
Daniels, Justin ;
Narayan, Roger J. .
BIOFABRICATION, 2012, 4 (01)