Finite-time synchronization for different dimensional fractional-order complex dynamical networks

被引:22
|
作者
Lu, Jiyong [1 ]
Guo, Yanping [2 ]
Ji, Yude [2 ]
Fan, Shuangshuang [2 ]
机构
[1] Hebei Univ Sci & Technol, Sch Elect Engn, Shijiazhuang 050018, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
关键词
Adaptive update law; Complex Dynamical Networks (CDNs); Fractional-order; Finite-time synchronization; Settling time; SLIDING MODE CONTROLLER; NEURAL-NETWORKS; PROJECTIVE SYNCHRONIZATION; CLUSTER SYNCHRONIZATION; HYPERCHAOTIC SYSTEMS; CHAOTIC SYSTEMS; EXPONENTIAL SYNCHRONIZATION; GENERALIZED SYNCHRONIZATION; STABILITY; STABILIZATION;
D O I
10.1016/j.chaos.2019.109433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is involved with the finite-time synchronization problem between two different dimensional fractional-order complex dynamical networks (FOCDNs). Firstly, the definition of finite-time synchronization for different dimensional FOCDNs are introduced. Under the framework of finite-time control theory and fractional-order Lyapunov functional method, the controller is designed such that the FOCDNs are synchronized in a finite time. Secondly, some unknown parameters are adopted in the FOCDNs, novel adaptive updated control law and dynamical parameter estimation are proposed to guarantee that the finite-time synchronization can be obtained to achieve the desired conclusions. Furthermore, the setting times for synchronization of FOCDNs are explicitly evaluated. Finally, a numerical example is presented to demonstrate the effectiveness of proposed control algorithms. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Outer synchronization of fractional-order complex dynamical networks
    Yang, Yong
    Wang, Yu
    Li, Tianzeng
    OPTIK, 2016, 127 (19): : 7395 - 7407
  • [22] Synchronization Rather Than Finite-Time Synchronization Results of Fractional-Order Multi-Weighted Complex Networks
    Yao, Xiangqian
    Liu, Yu
    Zhang, Zhijun
    Wan, Weiwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7052 - 7063
  • [23] Finite-time synchronization of fractional-order complex-valued coupled systems
    Xu, Yao
    Li, Wenxue
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 549
  • [24] Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks
    Zhao, Feng
    Jian, Jigui
    Wang, Baoxian
    FUZZY SETS AND SYSTEMS, 2023, 467
  • [25] Finite-Time Synchronization and Energy Consumption Prediction for Multilayer Fractional-Order Networks
    Tong, Dongbing
    Ma, Ben
    Chen, Qiaoyu
    Wei, Yunbing
    Shi, Peng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (06) : 2176 - 2180
  • [26] Global synchronization in finite time for fractional-order coupling complex dynamical networks with discontinuous dynamic nodes
    Jia, You
    Wu, Huaiqin
    NEUROCOMPUTING, 2019, 358 : 20 - 32
  • [27] Finite-time synchronization of fractional-order heterogeneous dynamical networks with impulsive interference via aperiodical intermittent control
    Xie, Tao
    Xiong, Xing
    AIMS MATHEMATICS, 2025, 10 (03): : 6291 - 6317
  • [28] Finite-Time Cluster Synchronization of Delayed Fractional-Order Fully Complex-Valued Community Networks
    Kang, Qiaokun
    Yang, Qingxi
    Lin, Zhilong
    Gan, Qintao
    IEEE ACCESS, 2022, 10 : 103948 - 103962
  • [29] Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances
    Wang, Shuguo
    Zheng, Song
    Cui, Linxiang
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [30] Synchronization in Finite-Time of Delayed Fractional-Order Fully Complex-Valued Dynamical Networks via Non-Separation Method
    Kang, Qiaokun
    Yang, Qingxi
    Yang, Jing
    Gan, Qintao
    Li, Ruihong
    ENTROPY, 2022, 24 (10)