Weak via strong Stackelberg problem: New results

被引:100
作者
Loridan, P
Morgan, J
机构
[1] UNIV PARIS 01, CERSEM, F-75634 PARIS 13, FRANCE
[2] UNIV NAPLES FEDERICO II, DIPARTIMENTO MATEMAT & APPLICAZ, I-80126 NAPLES, ITALY
关键词
Stackelberg problems; Molodtsov's method; approximate solutions; limits of sets; epiconvergence; sequential approximation;
D O I
10.1007/BF00121269
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We are concerned with weak Stackelberg problems such as those considered in [19], [23] and [25]. Based on a method due to Molodtsov, we present new results to approximate such problems by sequences of strong Stackelberg problems. Results related to convergence of marginal functions and approximate solutions are given. The case of data perturbations is also considered.
引用
收藏
页码:263 / 287
页数:25
相关论文
共 41 条
[31]  
MALLOZZI L, 1993, J OPTIMIZATION THEOR, V78
[32]  
Mangasarian O., 1969, NONLINEAR PROGRAMMIN
[33]  
Molodtsov D. A., 1976, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V16, P1451
[34]  
MORGAN J, 1989, NONSMOOTH OPTIMIZATI
[35]  
Outrata J. V., 1990, ZOR, Methods and Models of Operations Research, V34, P255, DOI 10.1007/BF01416737
[36]   NECESSARY OPTIMALITY CONDITIONS FOR STACKELBERG PROBLEMS [J].
OUTRATA, JV .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :305-320
[37]  
SZYMANOWSKI J, 1979, MATH PROGRAM STUD, V10, P158
[38]   A GLOBAL OPTIMIZATION APPROACH FOR THE LINEAR 2-LEVEL PROGRAM [J].
TUY, H ;
MIGDALAS, A ;
VARBRAND, P .
JOURNAL OF GLOBAL OPTIMIZATION, 1993, 3 (01) :1-23
[39]  
YE JJ, 1992, OPTIMALITY CONDITION
[40]  
YE JJ, 1993, NECESSARY CONDITIONS