Weak via strong Stackelberg problem: New results

被引:100
作者
Loridan, P
Morgan, J
机构
[1] UNIV PARIS 01, CERSEM, F-75634 PARIS 13, FRANCE
[2] UNIV NAPLES FEDERICO II, DIPARTIMENTO MATEMAT & APPLICAZ, I-80126 NAPLES, ITALY
关键词
Stackelberg problems; Molodtsov's method; approximate solutions; limits of sets; epiconvergence; sequential approximation;
D O I
10.1007/BF00121269
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We are concerned with weak Stackelberg problems such as those considered in [19], [23] and [25]. Based on a method due to Molodtsov, we present new results to approximate such problems by sequences of strong Stackelberg problems. Results related to convergence of marginal functions and approximate solutions are given. The case of data perturbations is also considered.
引用
收藏
页码:263 / 287
页数:25
相关论文
共 41 条
[1]  
ADDOUNE S, 1992, JOURNEES OPTIMISATIO
[2]   A SOLUTION METHOD FOR THE STATIC CONSTRAINED STACKELBERG PROBLEM VIA PENALTY METHOD [J].
AIYOSHI, E ;
SHIMIZU, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (12) :1111-1114
[3]  
Attouch H., 1984, VARIATIONAL CONVERGE
[4]   AN EXPLICIT SOLUTION TO THE MULTILEVEL PROGRAMMING PROBLEM [J].
BARD, JF ;
FALK, JE .
COMPUTERS & OPERATIONS RESEARCH, 1982, 9 (01) :77-100
[5]   AN EFFICIENT POINT ALGORITHM FOR A LINEAR 2-STAGE OPTIMIZATION PROBLEM [J].
BARD, JF .
OPERATIONS RESEARCH, 1983, 31 (04) :670-684
[6]  
Basar T., 1999, Dynamic noncooperative game theory, V23
[7]   GAMMA-CONVERGENCE AND OPTIMAL-CONTROL PROBLEMS [J].
BUTTAZZO, G ;
MASO, GD .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 38 (03) :385-407
[8]  
CHEN Y, 1991, CRT794 U MONT CTR RE
[9]  
De Giorgi E., 1975, Atti della Accad. Nazionale dei Lincei. Cl. Sci. Fis. Mat. Natur. Rend. Ser, V58, P842
[10]  
Dempe S., 1992, Optimization, V25, P341, DOI 10.1080/02331939208843831