Efficient and Hysteresis-Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer

被引:130
作者
Wang, Ying-Chiao [1 ]
Li, Xiaodong [1 ]
Zhu, Liping [1 ]
Liu, Xiaohui [1 ]
Zhang, Wenjun [1 ]
Fang, Junfeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Graphene Technol & Applicat Zhejiang Prov, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
electron transport layer; flexible devices; fullerene; perovskite solar cells; solution process; PERFORMANCE; STABILITY;
D O I
10.1002/aenm.201701144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fullerene derivatives, which possess extraordinary geometric shapes and high electron affinity, have attracted significant attention for thin film technologies. This study demonstrates an important photovoltaic application using carboxyl-functionalized carbon buckyballs, C60 pyrrolidine tris-acid (CPTA), to fabricate electron transport layers (ETLs) that replace traditional metal oxide-based ETLs in efficient and stable n-i-p-structured planar perovskite solar cells (PSCs). The uniform CPTA film is covalently anchored onto the surface of indium tin oxide (ITO), significantly suppressing hysteresis and enhancing the flexural strength in the CPTA-modified PSCs. Moreover, solution-processable CPTA-based ETLs also enable the fabrication of lightweight flexible PSCs. The maximum-performing device structures composed of ITO/CPTA/CH3NH3PbI3/2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD)/Au yield power conversion efficiencies of more than 18% on glass substrates and up to 17% on flexible substrates. These results indicate that the CPTA layers provide new opportunities for solution-processed organic ETLs by substantially simplifying the procedure for fabricating PSCs for portable applications.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] [Anonymous], ADV MATER
  • [2] Low-temperature processed meso-superstructured to thin-film perovskite solar cells
    Ball, James M.
    Lee, Michael M.
    Hey, Andrew
    Snaith, Henry J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1739 - 1743
  • [3] Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
    Bi, Cheng
    Wang, Qi
    Shao, Yuchuan
    Yuan, Yongbo
    Xiao, Zhengguo
    Huang, Jinsong
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Fluorination of fullerenes and their derivatives
    Boltalina, OV
    [J]. JOURNAL OF FLUORINE CHEMISTRY, 2000, 101 (02) : 273 - 278
  • [5] Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
  • [6] 2-W
  • [7] Calio L., ANGEW CHEM INT ED, V55, P14522
  • [8] Facilitating Electron Transportation in Perovskite Solar Cells via Water-Soluble Fullerenol Interlayers
    Cao, Tiantian
    Wang, Zhaowei
    Xia, Yijun
    Song, Bo
    Zhou, Yi
    Chen, Ning
    Li, Yongfang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) : 18284 - 18291
  • [9] Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers
    Chen, Wei
    Wu, Yongzhen
    Yue, Youfeng
    Liu, Jian
    Zhang, Wenjun
    Yang, Xudong
    Chen, Han
    Bi, Enbing
    Ashraful, Islam
    Graetzel, Michael
    Han, Liyuan
    [J]. SCIENCE, 2015, 350 (6263) : 944 - 948
  • [10] Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles
    Cheng, Yuanhang
    Yang, Qing-Dan
    Xiao, Jingyang
    Xue, Qifan
    Li, Ho-Wa
    Guan, Zhiqiang
    Yip, Hin-Lap
    Tsang, Sai-Wing
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) : 19986 - 19993