A sparse approximate inverse preconditioner for the conjugate gradient method

被引:280
作者
Benzi, M
Meyer, CD
Tuma, M
机构
[1] CERFACS, F-31057 TOULOUSE, FRANCE
[2] N CAROLINA STATE UNIV, DEPT MATH, RALEIGH, NC 27695 USA
[3] ACAD SCI CZECH REPUBL, INST COMP SCI, PRAGUE 18207 8, CZECH REPUBLIC
关键词
sparse approximate inverses; preconditioned conjugate gradient method; H-matrices; incomplete factorizations;
D O I
10.1137/S1064827594271421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix A is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient calculations. It is proved that in exact arithmetic the preconditioner is well defined if A is an H-matrix. The results of numerical experiments are presented.
引用
收藏
页码:1135 / 1149
页数:15
相关论文
共 29 条
[11]   SPARSE-MATRIX TEST PROBLEMS [J].
DUFF, IS ;
GRIMES, RG ;
LEWIS, JG .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (01) :1-14
[12]  
DUFF IS, 1980, AERER8730 HARW LAB
[13]  
Faddeev D.K., 1963, Computational Methods of Linear Algebra
[14]   NOTES ON THE SOLUTION OF ALGEBRAIC LINEAR SIMULTANEOUS EQUATIONS [J].
FOX, L ;
HUSKEY, HD ;
WILKINSON, JH .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1948, 1 (02) :149-173
[15]  
GEORGE A, 1981, COMPUTER SOLUTION LA
[16]  
Gill M., 1981, Practical Optimization
[17]  
GROTE M, 1993, PROCEEDINGS OF THE SIXTH SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, VOLS 1 AND 2, P519
[18]  
GROTE M., 1994, SCCM9403 STANF U
[19]  
HOUSEHOLDER AS, 1964, THEORY MATRICES NUME
[20]   FACTORIZED SPARSE APPROXIMATE INVERSE PRECONDITIONINGS .1. THEORY [J].
KOLOTILINA, LY ;
YEREMIN, AY .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (01) :45-58