Angle measures, general rotations, and roulettes in normed planes

被引:4
作者
Balestro, Vitor [1 ,2 ]
Horvath, Akos G. [3 ]
Martini, Horst [4 ,5 ]
机构
[1] CEFET RJ, Campus Nova Friburgo, Nova Friburgo, Brazil
[2] Univ Fed Fluminense, Inst Matemat & Estat, Niteroi, RJ, Brazil
[3] Budapest Univ Technol & Econ, Dept Geometry, H-1521 Budapest, Hungary
[4] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[5] Harbin Univ Sci & Technol, Dept Appl Math, Harbin 150080, Heilongjiang, Peoples R China
关键词
Angle measure; Busemann curvature; Euler-Savary equations; Finsler space; Normed plane; Roulettes; CONVEX MINKOWSKI PLANES; EULER-SAVARY FORMULA; INFINITESIMAL RIGIDITY; SPACES; MOTION; POINT;
D O I
10.1007/s13324-016-0155-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.
引用
收藏
页码:549 / 575
页数:27
相关论文
共 51 条
  • [11] Dekster B. V., 2004, J GEOM, V80, P48
  • [12] Total Angle around a Point in Minkowski Plane
    Dekster, Boris
    [J]. JOURNAL OF GEOMETRY, 2009, 93 (1-2) : 38 - 45
  • [13] DIMINNIE CR, 1988, HOUSTON J MATH, V14, P475
  • [14] Dragomir SS., 2004, Semi-Inner Products and Applications
  • [15] Angle measures and bisectors in Minkowski planes
    Düvelmeyer, N
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (04): : 523 - 534
  • [16] On angular measures in Minkowski planes
    Fankhaenel, Andreas
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2011, 52 (02): : 335 - 342
  • [17] Fankhanel A., 2009, BEITR ALGEBRA GEOM, V50, P295
  • [18] Finsler P., 1940, NATURF GES ZURICH, V85, P155
  • [19] Garcia-Roig J. L., 1997, PITMAN RES NOTES MAT, V376, P42
  • [20] TIGHTEST PACKINGS IN MINKOWSKI PLANE
    GRAHAM, RL
    WITSENHA.HS
    ZASSENHA.HJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (03) : 699 - &