Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale

被引:81
作者
Manfrinato, Vitor R. [1 ]
Stein, Aaron [1 ]
Zhang, Lihua [1 ]
Nam, Chang-Yong [1 ]
Yager, Kevin G. [1 ]
Stach, Eric A. [1 ]
Black, Charles T. [1 ]
机构
[1] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
Nanofabrication; electron-beam lithography; aberration correction; electron microscopy; nanomaterials; pattern transfer; poly(methyl methacrylate); HYDROGEN SILSESQUIOXANE; RESOLUTION LIMITS; RESIST; NANOSTRUCTURES; FABRICATION;
D O I
10.1021/acs.nanolett.7b00514
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Patterning materials efficiently at the smallest length scales is a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 +/- 0.5 nm) and the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.
引用
收藏
页码:4562 / 4567
页数:6
相关论文
共 41 条
[1]   Enhanced resolution of poly(methyl methacrylate) electron resist by thermal processing [J].
Arjmandi, Nima ;
Lagae, Liesbet ;
Borghs, Gustaaf .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (04) :1915-1918
[2]   Large area arrays of metal nanowires [J].
Auzelyte, V. ;
Solak, H. H. ;
Ekinci, Y. ;
MacKenzie, R. ;
Voeroes, J. ;
Olliges, S. ;
Spolenak, R. .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :1131-1134
[3]   Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms [J].
Christensen, Thomas ;
Yan, Wei ;
Raza, Soren ;
Jauho, Antti-Pekka ;
Mortensen, N. Asger ;
Wubs, Martijn .
ACS NANO, 2014, 8 (02) :1745-1758
[4]   Optimal temperature for development of poly(methylmethacrylate) [J].
Cord, Bryan ;
Lutkenhaus, Jodie ;
Berggren, Karl K. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2013-2016
[5]   Molecular glass resists as high-resolution patterning materials [J].
De Silva, Anuja ;
Felix, Nelson M. ;
Ober, Christopher K. .
ADVANCED MATERIALS, 2008, 20 (17) :3355-3361
[6]   MoS2 transistors with 1-nanometer gate lengths [J].
Desai, Sujay B. ;
Madhvapathy, Surabhi R. ;
Sachid, Angada B. ;
Llinas, Juan Pablo ;
Wang, Qingxiao ;
Ahn, Geun Ho ;
Pitner, Gregory ;
Kim, Moon J. ;
Bokor, Jeffrey ;
Hu, Chenming ;
Wong, H. -S. Philip ;
Javey, Ali .
SCIENCE, 2016, 354 (6308) :99-102
[7]   Fabrication of high-density nanostructures by electron beam lithography [J].
Dial, O ;
Cheng, CC ;
Scherer, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :3887-3890
[8]  
Duan H., 2010, J VAC SCI TECHNOL B, V28
[9]   Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps [J].
Duan, Huigao ;
Hu, Hailong ;
Kumar, Karthik ;
Shen, Zexiang ;
Yang, Joel K. W. .
ACS NANO, 2011, 5 (09) :7593-7600
[10]   Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV [J].
Egerton, R. F. .
MICROSCOPY RESEARCH AND TECHNIQUE, 2012, 75 (11) :1550-1556