Irigonometrically-fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation

被引:0
|
作者
Anastassi, ZA
Simos, TE
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a trigonometrically-fitted explicit Runge-Kutta method for the numerical solution of the radial Schrodinger equation. We make the local truncation error analysis of the new method and compare the results to the error of classical methods. We also compare the function evaluations needed to produce a solution of certain accuracy. (c) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:21 / 23
页数:3
相关论文
共 50 条
  • [41] Structure preservation of exponentially fitted Runge-Kutta methods
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 421 - 434
  • [42] Runge-Kutta methods for the numerical solution of stiff semilinear systems
    Calvo, M
    González-Pinto, S
    Montijano, JI
    BIT, 2000, 40 (04): : 611 - 639
  • [43] Runge-Kutta Methods for the Numerical Solution of Stiff Semilinear Systems
    M. Calvo
    S. González-Pinto
    J. I. Montijano
    BIT Numerical Mathematics, 2000, 40 : 611 - 639
  • [44] Runge-Kutta methods for numerical solution of stochastic differential equations
    Tocino, A
    Ardanuy, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) : 219 - 241
  • [45] On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods
    Van de Vyver, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (02) : 309 - 318
  • [46] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [47] An embedded Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrodinger equation
    Simos, TE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (06): : 1115 - 1133
  • [48] SYMPLECTIC RUNGE-KUTTA SEMIDISCRETIZATION FOR STOCHASTIC SCHRODINGER EQUATION
    Chen, Chuchu
    Hong, Jialin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2569 - 2593
  • [49] Some modified Runge-Kutta methods for the numerical solution of some specific Schrodinger equations and related problems
    Simos, TE
    Williams, PS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (26): : 4731 - 4744
  • [50] New two-derivative runge-kutta methods for the numerical solution of the schrödinger equation
    Zhang, Yanwei
    Su, Weiwei
    Fang, Yonglei
    ICIC Express Letters, Part B: Applications, 2015, 6 (09): : 2553 - 2558