Forecast sensitivity to the observation error covariance in variational data assimilation

被引:2
作者
Daescu, Dacian N. [1 ]
机构
[1] Portland State Univ, Portland, OR 97207 USA
来源
ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS | 2010年 / 1卷 / 01期
关键词
data assimilation; adjoint modeling; sensitivity analysis; OBSERVATION IMPACT; STATISTICS; DIAGNOSIS; ENSEMBLE; 4D-VAR;
D O I
10.1016/j.procs.2010.04.142
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjoint-DAS) make feasible the evaluation of the derivative-based forecast sensitivity to DAS input parameters in numerical weather prediction (NWP). The adjoint estimation of the forecast sensitivity to the observation error covariance in the DAS is considered as a practical approach to provide all-at-once first order estimates to the forecast impact as a result of variations in the specification of the observation error statistics and guidance for tuning of error covariance parameters. The proposed methodology extends the capabilities of the adjoint modeling tools currently in place at major NWP centers for observation sensitivity and observation impact analysis. Illustrative numerical results are presented with the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint.
引用
收藏
页码:1271 / 1279
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2006, Dynamic Data Assimilation: a Least Squares Approach
[2]  
Baker N. L., 2009, DATA ASSIMILATION AT, P177
[3]   Observation and background adjoint sensitivity in the adaptive observation-targeting problem [J].
Baker, NL ;
Daley, R .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2000, 126 (565) :1431-1454
[4]   A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1971-1996
[5]   A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1951-1970
[6]  
Bennett A. F., 2002, Inverse modeling of the ocean and atmosphere
[7]  
Cacuci D, 2003, Sensitivity and Uncertainty Analysis: Theory, VI
[8]   Monitoring the observation impact on the short-range forecast [J].
Cardinali, Carla .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (638) :239-250
[9]   Diagnosis and tuning of observational error in a quasi-operational data assimilation setting [J].
Chapnik, B ;
Desroziers, G ;
Rabier, F ;
Talagrand, O .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (615) :543-565
[10]  
COURTIER P, 1994, Q J ROY METEOR SOC, V120, P1367, DOI 10.1256/smsqj.51911