Some examples of persistence in epidemiological models

被引:12
作者
Margheri, A
Rebelo, C
机构
[1] Fac Ciencias Lisboa, P-1649003 Lisbon, Portugal
[2] Ctr Matemat & Aplicacoes, P-1649003 Lisbon, Portugal
关键词
persistence; epidemiology;
D O I
10.1007/s00285-002-0193-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this short note is to illustrate how an abstract result by Fonda about persistence in dynamical systems can be easily applied to some epidemiological models.
引用
收藏
页码:564 / 570
页数:7
相关论文
共 14 条
[1]   To treat or not to treat: The case of tuberculosis [J].
CastilloChavez, C ;
Feng, ZL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (06) :629-656
[2]   A model for dengue disease with variable human population [J].
Esteva, L ;
Vargas, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (03) :220-240
[3]   Analysis of a Dengue disease transmission model [J].
Esteva, L ;
Vargas, C .
MATHEMATICAL BIOSCIENCES, 1998, 150 (02) :131-151
[4]   Dendritic cells infected with Mycobacterium bovis bacillus Calmette Guerin activate CD8+ T cells with specificity for a novel mycobacterial epitope [J].
Feng, CG ;
Demangel, C ;
Kamath, AT ;
Macdonald, M ;
Britton, WJ .
INTERNATIONAL IMMUNOLOGY, 2001, 13 (04) :451-458
[5]   UNIFORMLY PERSISTENT SEMIDYNAMICAL SYSTEMS [J].
FONDA, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :111-116
[6]   4 SEI ENDEMIC MODELS WITH PERIODICITY AND SEPARATRICES [J].
GAO, LQ ;
MENALORCA, J ;
HETHCOTE, HW .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :157-184
[7]   Stability and persistence in a compartment model of pulmonary tuberculosis [J].
Gomes, MC ;
Margheri, A ;
Rebelo, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (04) :617-636
[8]  
LaSalle J.P., 1976, Society For Industrial and Applied Mathematics
[9]   Global dynamics of a SEIR model with varying total population size [J].
Li, MY ;
Graef, JR ;
Wang, LC ;
Karsai, J .
MATHEMATICAL BIOSCIENCES, 1999, 160 (02) :191-213
[10]  
Li Y., 1995, MATH BIOSCI, V125, P155