Constant-Rank Condition and Second-Order Constraint Qualification

被引:37
作者
Andreani, R. [2 ]
Echaguee, C. E.
Schuverdt, M. L. [1 ]
机构
[1] Univ La Plata, CONICET, Dept Math, FCE, RA-1900 La Plata, Bs As, Argentina
[2] Univ Estadual Campinas, Dept Appl Math, IMECC UNICAMP, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear programming; Constraint qualifications; LINEAR-DEPENDENCE CONDITION; OPTIMALITY CONDITIONS;
D O I
10.1007/s10957-010-9671-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The constant-rank condition for feasible points of nonlinear programming problems was defined by Janin (Math. Program. Study 21:127-138, 1984). In that paper, the author proved that the constant-rank condition is a first-order constraint qualification. In this work, we prove that the constant-rank condition is also a second-order constraint qualification. We define other second-order constraint qualifications.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 30 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]   On second-order optimality conditions for nonlinear programming [J].
Andreani, R. ;
Martinez, J. M. ;
Schuverdt, M. L. .
OPTIMIZATION, 2007, 56 (5-6) :529-542
[3]   On the relation between constant positive linear dependence condition and quasinormality constraint qualification [J].
Andreani, R ;
Martinez, JM ;
Schuverdt, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (02) :473-485
[4]   Second-order negative-curvature methods for box-constrained and general constrained optimization [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (02) :209-236
[5]   Degenerate nonlinear programming with a quadratic growth condition [J].
Anitescu, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1116-1135
[6]  
[Anonymous], 1967, Nonlinear Programming
[7]  
[Anonymous], 1999, Athena scientific Belmont
[8]  
[Anonymous], J SOVIET MATH, DOI 10.1007/BF01373649
[9]  
[Anonymous], 1999, SPRINGER SCI
[10]   On the classical necessary second-order optimality conditions in the presence of equality and inequality constraints [J].
Baccari, A ;
Trad, A .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) :394-408