Optimizing conductivity and cationic transport in crosslinked solid polymer electrolytes

被引:17
作者
Baroncini, Elyse A. [1 ]
Rousseau, Dominique M. [1 ]
Strekis, Christopher A. [1 ]
Stanzione, Joseph F., III [1 ]
机构
[1] Rowan Univ, Henry M Rowan Coll Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
关键词
Solid polymer electrolyte; Ion transport; Lithium ion; Bio-based; Vanillyl alcohol; ION-TRANSPORT; MECHANISM; MEMBRANES; VANILLIN; BLOCK;
D O I
10.1016/j.ssi.2019.115161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) are prepared through thiol-ene polymerization with functionalized, potentially bio-based, aromatic monomers. Differing functionality and aromatic content of the monomers vary the glass transition temperatures (T(g)s) and crosslink densities of the resulting polymers, allowing for analysis of the structure-property relationships. Though the SPEs contain repeating PEO segments, the formation of crystalline regions is avoided through the crosslinked nature of the networks. The solid polymer electrolytes exhibit high conductivity values at room temperature, the highest reaching 7.65 x 10(-4) S cm(-1) for the DAVA-containing SPE with 50 mol% LiPF6, and moderate lithium ion transference numbers, the highest reaching 0.39 for the DAGd-containing SPE with 25 mol% LiPF6. Lower polymer T-g is associated with higher overall conductivity, but, the SPEs with higher crosslink densities display higher cationic transport, though the T(g)s are higher. Therefore, it is determined that there exists an optimal range of polymer T(g)s, crosslink densities and neat polymer dielectric constants for high cationic transport through the SPEs; extremes of these parameters are not necessarily beneficial. The promising conductivity and ion transference results, in addition to high initial decomposition temperatures in N-2 ( > 300 degrees C) and great electrochemical stability, reveal potential for these crosslinked, aromatic, thiol-ene polymers in electrolyte applications in lithium-ion batteries.
引用
收藏
页数:10
相关论文
共 52 条
[11]   Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates [J].
Borodin, Oleg ;
Smith, G. D. .
JOURNAL OF SOLUTION CHEMISTRY, 2007, 36 (06) :803-813
[12]  
Cesiulis H, 2016, NANOSCI TECHNOL, P3, DOI 10.1007/978-3-319-30198-3_1
[13]   Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes [J].
Chen, Shimou ;
Wen, Kaihua ;
Fan, Juntian ;
Bando, Yoshio ;
Golberg, Dmitri .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (25) :11631-11663
[14]   Gel Polymer Electrolytes for Electrochemical Energy Storage [J].
Cheng, Xunliang ;
Pan, Jian ;
Zhao, Yang ;
Liao, Meng ;
Peng, Huisheng .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[15]   Degradable photopolymerized thiol-based solid polymer electrolytes towards greener Li-ion batteries [J].
Chiappone, A. ;
Gerbaldi, C. ;
Roppolo, I. ;
Garino, N. ;
Bongiovanni, R. .
POLYMER, 2015, 75 :64-72
[16]   Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J].
Diederichsen, Kyle M. ;
McShane, Eric J. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2017, 2 (11) :2563-2575
[17]   Vanillin, a promising biobased building-block for monomer synthesis [J].
Fache, Maxence ;
Darroman, Emilie ;
Besse, Vincent ;
Auvergne, Remi ;
Caillol, Sylvain ;
Boutevin, Bernard .
GREEN CHEMISTRY, 2014, 16 (04) :1987-1998
[18]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[19]   A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin [J].
Gong, Sheng-Dong ;
Huang, Yun ;
Cao, Hai-Jun ;
Lin, Yuan-Hua ;
Li, Yang ;
Tang, Shui-Hua ;
Wang, Ming-Shan ;
Li, Xing .
JOURNAL OF POWER SOURCES, 2016, 307 :624-633
[20]   Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the "Wrong'' direction? [J].
Gouverneur, M. ;
Schmidt, F. ;
Schoenhoff, M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (11) :7470-7478