Building gene networks with time-delayed regulations

被引:10
作者
Chaturvedi, Iti [1 ]
Rajapakse, Jagath C. [1 ,2 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Bioinformat Res Ctr, Singapore 639798, Singapore
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[3] Singapore MIT Alliance, Singapore 117543, Singapore
关键词
Dynamic Bayesian networks; Gene regulatory networks; Viterbi algorithm; Skip-chain model; Genetic algorithms;
D O I
10.1016/j.patrec.2010.03.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method to build gene regulatory networks (GRN) capable of representing time-delayed regulations. The gene expression data is represented in two types of graphical models: a linear model using a dynamic Bayesian network (DBN) and a skip model using a hidden Markov model. The linear model is designed to find short-delays and skip model for long-delays. The algorithm was tested on time-series data obtained on yeast cell-cycle and validated against protein-protein interaction data. The proposed method better fits expression profiles compared to classical higher-order DBN and found core genes that are crucial in cell-cycle regulation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2133 / 2137
页数:5
相关论文
共 14 条
[1]   The BioGRID interaction database:: 2008 update [J].
Breitkreutz, Bobby-Joe ;
Stark, Chris ;
Reguly, Teresa ;
Boucher, Lorrie ;
Breitkreutz, Ashton ;
Livstone, Michael ;
Oughtred, Rose ;
Lackner, Daniel H. ;
Bahler, Jurg ;
Wood, Valerie ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D637-D640
[2]  
CAPPAE O, 2005, INFERENCE HIDDEN MAR
[3]   Detecting robust time-delayed regulation in Mycobacterium tuberculosis [J].
Chaturvedi I. ;
Rajapakse J.C. .
BMC Genomics, 10 (Suppl 3)
[4]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[5]   Using Bayesian networks to analyze expression data [J].
Friedman, N ;
Linial, M ;
Nachman, I ;
Pe'er, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :601-620
[6]  
Friedman N., 1998, P 14 C UNCERTAINTY A, P139
[7]  
Galley M., 2006, P 2006 C EMP METH NA, P364
[8]   Identifying genes of gene regulatory networks using formal concept analysis [J].
Gebert, Jutta ;
Motameny, Susanne ;
Faigle, Ulrich ;
Forst, Christian V. ;
Schrader, Rainer .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2008, 15 (02) :185-194
[9]   Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks [J].
Li, Peng ;
Zhang, Chaoyang ;
Perkins, Edward J. ;
Gong, Ping ;
Deng, Youping .
BMC BIOINFORMATICS, 2007, 8 (Suppl 7)
[10]  
Liu B, 2009, LECT N BIOINFORMAT, V5688, P251