A theoretical framework for the study of compression sensing in ionic polymer metal composites

被引:1
作者
Volpini, Valentina [1 ]
Bardella, Lorenzo [1 ]
Rodella, Andrea [2 ]
Cha, Youngsu [3 ]
Porfiri, Maurizio [4 ]
机构
[1] Univ Brescia, Dept Civil Environm Architectural Engn & Math, Via Branze 43, I-25123 Brescia, Italy
[2] Univ Trento, Dept Civil Environm & Mech Engn, Via Mesiano 77, I-38123 Trento, Italy
[3] Korea Inst Sci & Technol, Ctr Robot Res 5, Hwarang Ro,14 Gil, Seoul 02792, South Korea
[4] New York Univ, Dept Mech & Aerosp Engn, Tandon Sch Engn, MetroTech Ctr 6, Brooklyn, NY 11201 USA
来源
ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2017 | 2017年 / 10163卷
基金
美国国家科学基金会;
关键词
Ionic polymer metal composites; sensing; multiphysics; electrochemistry; matched asymptotic expansions; finite deformations;
D O I
10.1117/12.2257361
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ionic Polymer Metal Composites (IPMCs) are electro-responsive materials for sensing and actuation, consisting of an ion-exchange polymeric membrane with ionized units, plated within noble metal electrodes. In this work, we investigate the sensing response of IPMCs that are subject to a through-the-thickness compression, by specializing the continuum model introduced by Cha and Porfiri,(1) to this one-dimensional problem. This model modifies the classical Poisson-Nernst-Plank system governing the electrochemistry in the absence of mechanical effects, by accounting for finite deformations underlying the actuation and sensing processes. With the aim of accurately describing the IPMC dynamic compressive behavior, we introduce a spatial asymmetry in the properties of the membrane, which must be accounted for to trigger a sensing response. Then, we determine an analytical solution by applying the singular perturbation theory, and in particular the method of matched asymptotic expansions. This solution shows a good agreement with experimental findings reported in literature.
引用
收藏
页数:6
相关论文
共 13 条
[1]   Nonlinear sensing of ionic polymer metal composites [J].
Aureli, Matteo ;
Porfiri, Maurizio .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2013, 25 (2-4) :273-310
[2]   Mechanics and electrochemistry of ionic polymer metal composites [J].
Cha, Youngsu ;
Porfiri, Maurizio .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 71 :156-178
[3]   A dynamic model for ionic polymer-metal composite sensors [J].
Chen, Zheng ;
Tan, Xiaobo ;
Will, Alexander ;
Ziel, Christopher .
SMART MATERIALS AND STRUCTURES, 2007, 16 (04) :1477-1488
[4]   A nonlinear, control-oriented model for ionic polymer-metal composite actuators [J].
Chen, Zheng ;
Hedgepeth, Dawn Rochelle ;
Tan, Xiaobo .
SMART MATERIALS AND STRUCTURES, 2009, 18 (05)
[5]   Modeling of electromechanical charge sensing in ionic polymer transducers [J].
Farinholt, K ;
Leo, DJ .
MECHANICS OF MATERIALS, 2004, 36 (5-6) :421-433
[6]   Large deformation and electrochemistry of polyelectrolyte gels [J].
Hong, Wei ;
Zhao, Xuanhe ;
Suo, Zhigang .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (04) :558-577
[7]   Recent advances in ionic polymer-metal composite actuators and their modeling and applications [J].
Jo, Choonghee ;
Pugal, David ;
Oh, Il-Kwon ;
Kim, Kwang J. ;
Asaka, Kinji .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (07) :1037-1066
[8]  
Kocer BY, 2014, THESIS
[9]   Micromechanics of actuation of ionic polymer-metal composites [J].
Nemat-Nasser, S .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) :2899-2915
[10]   Charge dynamics in ionic polymer metal composites [J].
Porfiri, Maurizio .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (10)