Theoretical studies on the cascade decay processes of 1s-core-hole state of Ar ion

被引:5
作者
Wang, X. L. [1 ]
Liu, B. X. [2 ]
Zhang, G. H. [1 ]
Wang, P. Y. [1 ]
Liu, L. W. [1 ]
Li, X. Y. [1 ]
机构
[1] Northwest MinZu Univ, Coll Elect Engn, Lanzhou 730030, Peoples R China
[2] Lanzhou City Univ, Sch Bailie Mech Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Cascade decay; Final charge state distribution (FCSD); Deep inner-shell; Hole state; HARTREE-FOCK CALCULATION; INNER-SHELL IONIZATION; HOLLOW ARGON; RAY; KR; PHOTOIONIZATION; SPECTRA; ATOMS; NE;
D O I
10.1016/j.elspec.2021.147083
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The cascade decay processes from the 1s-core-hole state of Ar ion have been studied theoretically via straight-forward construction of de-excitation trees and high-accuracy level-to-level calculations using the flexible atomic code (FAC). The final charge state distribution (FCSD), contributions of different cascade routes to the FCSD, and the main production pathways of each Ari+ ion which are never discussed before are analyzed carefully. It is found that the de-excitation processes is very complex and Auger decay is the predominant channel, the most probable final charge state is 4, while Ar+ to Ar6+ ions can be produced in the 5-step Auger cascade decay processes for Ar(+1)s(-1) hole state. Ar+ is mainly derived from KM23 channel, Ar2+ is associated mainly with KL23 channel, when Ar3+, Ar4+, Ar5+ and Ar(6+)ions are mainly coming from KL23M23, KL23L23, KL1L23 and KL1L1 channels, respectively. Present studies would be helpful for further researches on the cascade decay processes of deep inner-shell hole states, and for the interaction between x-ray free-electron lasers and matter.
引用
收藏
页数:6
相关论文
共 38 条
[1]   Yields of multiply charged ions produced from inner-shell ionization in neutral Ne, Ar and Kr atoms [J].
Abdullah, AH ;
El-Shemi, AM ;
Ghoneim, AA .
RADIATION PHYSICS AND CHEMISTRY, 2003, 68 (05) :697-705
[2]   L-23-MM Auger spectrum of K-ionized argon: Decomposition by electron-ion and electron-electron coincidence techniques [J].
Alkemper, U ;
Doppelfeld, J ;
vonBusch, F .
PHYSICAL REVIEW A, 1997, 56 (04) :2741-2749
[3]   X-ray fluorescence and Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon [J].
Arp, U ;
LeBrun, T ;
Southworth, SH ;
MacDonald, MA ;
Jung, M .
PHYSICAL REVIEW A, 1997, 55 (06) :4273-4284
[4]   Deep-core photoionization of krypton atoms below and above the 1s ionization threshold [J].
Boudjemia, N. ;
Jankala, K. ;
Puettner, R. ;
Gejo, T. ;
Journel, L. ;
Kohmura, Y. ;
Huttula, M. ;
Piancastelli, M. N. ;
Simon, M. ;
Oura, M. .
PHYSICAL REVIEW A, 2020, 101 (05)
[5]   Monte Carlo simulation of cascade relaxation processes after 1s-photoionization of boron in the gas phase [J].
Bruehl, S. ;
Kochur, A. G. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (10)
[6]   Decay of the Ar 2s-1 and 2p-1 and Kr 3p-1 and 3d-1 hole states studied by photoelectron-ion coincidence spectroscopy -: art. no. 042708 [J].
Brünken, S ;
Gerth, C ;
Kanngiesser, B ;
Luhmann, T ;
Richter, M ;
Zimmermann, P .
PHYSICAL REVIEW A, 2002, 65 (04)
[7]  
Emma P, 2010, NAT PHOTONICS, V4, P641, DOI [10.1038/NPHOTON.2010.176, 10.1038/nphoton.2010.176]
[8]   Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes [J].
Foord, ME ;
Heeter, RF ;
Chung, HK ;
van Hoof, PAM ;
Bailey, JE ;
Cuneo, ME ;
Liedahl, DA ;
Fournier, KB ;
Jonauskas, V ;
Kisielius, R ;
Ramsbottom, C ;
Springer, PT ;
Keenan, FP ;
Rose, SJ ;
Goldstein, WH .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2006, 99 (1-3) :712-729
[9]   Imaging atomic structure and dynamics with ultrafast X-ray scattering [J].
Gaffney, K. J. ;
Chapman, H. N. .
SCIENCE, 2007, 316 (5830) :1444-1448
[10]   The flexible atomic code [J].
Gu, Ming Feng .
CANADIAN JOURNAL OF PHYSICS, 2008, 86 (05) :675-689