Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids

被引:33
作者
Sanchez-Puerta, M. Virginia [1 ]
Bachvaroff, Tsvetan R. [1 ]
Delwiche, Charles F. [1 ]
机构
[1] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
plastid evolution; chromalveolates; phylogenctics; haptophytes; dinoflagellates;
D O I
10.1016/j.ympev.2007.03.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Photosynthetic eukaryotes contain primary, secondary or tertiary plastids, depending on the Source of the organelle (a cyanobacterium or a photosynthetic eukaryote). Plastid phylogeny is relatively well investigated, but molecular phylogenies have conflicted as a function of gene choice, taxon-representations, and analytical method. To better understand the influences of these variables, we performed analyses of a multi-gene data set based on 62 plastid-associated genes of 15 taxa representing the major plastid lineages. In an attempt to distinguish phylogenetic signal from non-phylogenetic patterns, we analyzed the data using a wide range of phylogenetic methods and examined the effect of covarion evolution and compositional bias. The data suggest that the chlorophyll c-containing plastids are monophyletic and acquired their plastids from the red algae after the emergence of the Cyanidiales. The relationships among chl c-containing plastids are particularly hard to resolve. This is the largest data set used for this purpose; the analyses show that cryptophyte plastids are sister to other chl c-containing plastids, and haptophyte and peridinin-containing dinoflagellate plastids are closely related. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:885 / 897
页数:13
相关论文
共 74 条
[1]   A cyanobacterial gene in nonphotosynthetic protists - An early chloroplast acquisition in eukaryotes? [J].
Andersson, JO ;
Roger, AJ .
CURRENT BIOLOGY, 2002, 12 (02) :115-119
[2]   Covarion structure in plastid genome evolution:: A new statistical test [J].
Ané, C ;
Burleigh, JG ;
McMahon, MM ;
Sanderson, MJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (04) :914-924
[3]   Rate variation as a function of gene origin in plastid-derived genes of peridinin-containing dinoflagellates [J].
Bachvaroff, TR ;
Sanchez-Puerta, MV ;
Delwiche, CF .
JOURNAL OF MOLECULAR EVOLUTION, 2006, 62 (01) :42-U27
[4]   Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages [J].
Bachvaroff, TR ;
Puerta, MVS ;
Delwiche, CF .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (09) :1772-1782
[5]   Dinoflagellate expressed indicate massive transfer to the nuclear genome sequence tag data of chloroplast genes [J].
Bachvaroff, TR ;
Concepcion, GT ;
Rogers, CR ;
Herman, EM ;
Delwiche, CF .
PROTIST, 2004, 155 (01) :65-78
[6]   A kingdom-level phylogeny of eukaryotes based on combined protein data [J].
Baldauf, SL ;
Roger, AJ ;
Wenk-Siefert, I ;
Doolittle, WF .
SCIENCE, 2000, 290 (5493) :972-977
[7]  
BHATTACHARYA D, 1995, MOL BIOL EVOL, V12, P415
[8]   Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea:: Cyanobacterial introns and shared ancestry of red and green algae [J].
Burger, G ;
Saint-Louis, D ;
Gray, MW ;
Lang, BF .
PLANT CELL, 1999, 11 (09) :1675-1694
[9]   Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree [J].
Cavalier-Smith, T .
JOURNAL OF EUKARYOTIC MICROBIOLOGY, 1999, 46 (04) :347-366
[10]   CHIMERIC CONUNDRA - ARE NUCLEOMORPHS AND CHROMISTS MONOPHYLETIC OR POLYPHYLETIC [J].
CAVALIERSMITH, T ;
ALLSOPP, MTEP ;
CHAO, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11368-11372