Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO

被引:8
作者
Ranque, Pierre [1 ]
Zagorski, Jakub [1 ]
Accardo, Grazia [1 ]
Orue Mendizabal, Ander [1 ]
Lopez del Amo, Juan Miguel [1 ]
Boaretto, Nicola [1 ]
Martinez-Ibanez, Maria [1 ]
Arrou-Vignod, Hugo [1 ,2 ]
Aguesse, Frederic [1 ]
Armand, Michel [1 ]
Devaraj, Shanmukaraj [1 ]
机构
[1] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC EnergiGUNE, Alava Technol Pk, Vitoria 01510, Spain
[2] Fac Chem, Dept Appl Chem & Sci & Technol Polymer Mat, San Sebastian 20018, Spain
关键词
polymer grafting; composite electrolyte; ceramic-rich; solid-state batteries; LLZO; strategy; LITHIUM-ION; SURFACE MODIFICATION; SOLID ELECTROLYTES; BATTERIES; NANOPARTICLES; CONDUCTIVITY; LI7LA3ZR2O12; TRANSPORT;
D O I
10.3390/inorganics10060081
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Solid-state batteries are the holy grail for the next generation of automotive batteries. The development of solid-state batteries requires efficient electrolytes to improve the performance of the cells in terms of ionic conductivity, electrochemical stability, interfacial compatibility, and so on. These requirements call for the combined properties of ceramic and polymer electrolytes, making ceramic-rich polymer electrolytes a promising solution to be developed. Aligned with this aim, we have shown a surface modification of Ga substituted Li7La3Zr2O12 (LLZO), to be an essential strategy for the preparation of ceramic-rich electrolytes. Ceramic-rich polymer membranes with surface-modified LLZO show marked improvements in the performance, in terms of electrolyte physical and electrochemical properties, as well as coulombic efficiency, interfacial compatibility, and cyclability of solid-state cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Improved interfacial li-ion transport in composite polymer electrolytes via surface modification of LLZO
    Counihan, Michael J.
    Lee, Jungkuk
    Mirmira, Priyadarshini
    Barai, Pallab
    Burns, Meghan E.
    Amanchukwu, Chibueze V.
    Srinivasan, Venkat
    Zhang, Yuepeng
    Tepavcevic, Sanja
    ENERGY MATERIALS, 2025, 5 (03):
  • [22] Reaction Current Heterogeneity at the Interface between a Lithium Electrode and Polymer/Ceramic Composite Electrolytes
    Barai, Pallab
    Fuchs, Till
    Trevisanello, Enrico
    Kim, Hong Keun
    Richter, Felix H.
    Janek, Juergen
    Srinivasan, Venkat
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (04) : 2160 - 2177
  • [23] Dipoles and their possible effects on conductivity in polymer-ceramic composite electrolytes
    Kumar, B
    Rodrigues, SJ
    Spry, RJ
    ELECTROCHIMICA ACTA, 2002, 47 (08) : 1275 - 1281
  • [24] Polymer-ceramic composite electrolytes: conductivity and thermal history effects
    Kumar, B
    Scanlon, LG
    SOLID STATE IONICS, 1999, 124 (3-4) : 239 - 254
  • [25] Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes
    Trevisanello, Enrico
    Ates, Tugce
    Passerini, Stefano
    Richter, Felix H.
    Janek, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (11)
  • [26] Synergistic Enhancement of Mechanical and Electrochemical Properties in Grafted Polymer/Oxide Hybrid Electrolytes
    Scharf, Felix
    Krude, Annalena
    Lennartz, Peter
    Clausnitzer, Moritz
    Shukla, Gourav
    Buchheit, Annika
    Kempe, Fabian
    Diddens, Diddo
    Glomb, Pascal
    Mitchell, Melanie M.
    Danner, Timo
    Heuer, Andreas
    Latz, Arnulf
    Winter, Martin
    Brunklaus, Gunther
    SMALL, 2024, 20 (47)
  • [27] Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption
    Qu, Shangqing
    Cai, Guohong
    Qiao, Xianji
    Li, Guobao
    Sun, Junliang
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (19): : 8964 - 8972
  • [28] Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization
    Zhou, Dong
    Zhang, Mengyi
    Sun, Fu
    Arlt, Tobias
    Frerichs, Joop E.
    Dong, Kang
    Wang, Jun
    Hilger, Andre
    Wilde, Fabian
    Kolek, Martin
    Hansen, Michael Ryan
    Bieker, Peter
    Manke, Ingo
    Stan, Marian C.
    Winter, Martin
    NANO ENERGY, 2020, 77
  • [29] Tunneling Interpenetrative Lithium Ion Conduction Channels in Polymer-in-Ceramic Composite Solid Electrolytes
    Zhu, Lei
    Chen, Junchao
    Wang, Youwei
    Feng, Wuliang
    Zhu, Yanzhe
    Lambregts, Sander F. H.
    Wu, Yongmin
    Yang, Cheng
    van Eck, Ernst R. H.
    Peng, Luming
    Kentgens, Arno P. M.
    Tang, Weiping
    Xia, Yongyao
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (10) : 6591 - 6603
  • [30] NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries
    Bonizzoni, Simone
    Ferrara, Chiara
    Berbenni, Vittorio
    Anselmi-Tamburini, Umberto
    Mustarelli, Piercarlo
    Tealdi, Cristina
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (11) : 6142 - 6149