The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins

被引:244
作者
Hao, Qi [1 ,2 ,3 ]
Yin, Ping [1 ,2 ,3 ]
Li, Wenqi [1 ,2 ,3 ]
Wang, Li [4 ]
Yan, Chuangye [1 ,2 ,3 ]
Lin, Zhaohu [5 ]
Wu, Jim Zhen [5 ]
Wang, Jiawei [1 ,2 ,3 ]
Yan, S. Frank [6 ]
Yan, Nieng [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Biomembrane & Membrane Biotechnol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Sch Med, Struct Biol Ctr, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Peking Univ, Sch Life Sci, Beijing 100080, Peoples R China
[5] Roche Pharma Res & Early Dev China, Discovery Biol, Shanghai 201203, Peoples R China
[6] Roche Pharma Res & Early Dev China, Mol Design & Biostruct, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
SIGNAL-TRANSDUCTION; MECHANISM; START; BINDING;
D O I
10.1016/j.molcel.2011.05.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PYR1/PYL/RCAR proteins (PYLs) are confirmed abscisic acid (ABA) receptors, which inhibit protein phosphatase 2C (PP2C) upon binding to ABA. Arabidopsis thaliana has 14 PYLs, yet their functional distinction remains unclear. Here, we report systematic biochemical characterization of PYLs. A subclass of PYLs, represented by PYL10, inhibited PP2C in the absence of any ligand. Crystal structures of PYL10, both in the free form and in the HAB1 (PP2C)-bound state, revealed the structural basis for its constitutive activity. Structural-guided biochemical analyses revealed that ABA-independent inhibition of PP2C requires the PYLs to exist in a monomeric state. In addition, the residues guarding the entrance to the ligand-binding pocket of these PYLs should be bulky and hydrophobic. Based on these principles, we were able to generate monomeric PYL2 variants that gained constitutive inhibitory effect on PP2Cs. These findings provide an important framework for understanding the complex regulation of ABA signaling by PYL proteins.
引用
收藏
页码:662 / 672
页数:11
相关论文
共 31 条
[1]   PHENIX:: building new software for automated crystallographic structure determination [J].
Adams, PD ;
Grosse-Kunstleve, RW ;
Hung, LW ;
Ioerger, TR ;
McCoy, AJ ;
Moriarty, NW ;
Read, RJ ;
Sacchettini, JC ;
Sauter, NK ;
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1948-1954
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   Abscisic Acid: Emergence of a Core Signaling Network [J].
Cutler, Sean R. ;
Rodriguez, Pedro L. ;
Finkelstein, Ruth R. ;
Abrams, Suzanne R. .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 61, 2010, 61 :651-679
[4]  
DeLano W.L., 2002, The PyMOL molecular graphics system
[5]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[6]  
FEDOROFF NV, 2008, ANNU REV PLANT BIOL, V59, P387
[7]   In vitro reconstitution of an abscisic acid signalling pathway [J].
Fujii, Hiroaki ;
Chinnusamy, Viswanathan ;
Rodrigues, Americo ;
Rubio, Silvia ;
Antoni, Regina ;
Park, Sang-Youl ;
Cutler, Sean R. ;
Sheen, Jen ;
Rodriguez, Pedro L. ;
Zhu, Jian-Kang .
NATURE, 2009, 462 (7273) :660-U138
[8]   Functional Mechanism of the Abscisic Acid Agonist Pyrabactin [J].
Hao, Qi ;
Yin, Ping ;
Yan, Chuangye ;
Yuan, Xiaoqiu ;
Li, Wenqi ;
Zhang, Zhiping ;
Liu, Lei ;
Wang, Jiawei ;
Yan, Nieng .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (37) :28946-28952
[9]   Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions [J].
Hubbard, Katharine E. ;
Nishimura, Noriyuki ;
Hitomi, Kenichi ;
Getzoff, Elizabeth D. ;
Schroeder, Julian I. .
GENES & DEVELOPMENT, 2010, 24 (16) :1695-1708
[10]  
Iyer LM, 2001, PROTEINS, V43, P134, DOI 10.1002/1097-0134(20010501)43:2<134::AID-PROT1025>3.3.CO