ICA over Finite Fields

被引:12
作者
Gutch, Harold W. [1 ,2 ]
Gruber, Peter [3 ]
Theis, Fabian J. [2 ,4 ]
机构
[1] Max Planck Inst Dynam & Self Org, Gottingen, Germany
[2] Tech Univ Munich, Munich, Germany
[3] Univ Regensburg, Regensburg, Germany
[4] Helmholtz Zentrum, Neuherberg, Germany
来源
LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION | 2010年 / 6365卷
关键词
D O I
10.1007/978-3-642-15995-4_80
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Independent Component Analysis is usually performed over the fields of reals or complex numbers and the only other field where some insight has been gained so far is GF(2), the finite field with two elements. We extend this to arbitrary finite fields, proving separability of the model if the sources are non-uniform and non-degenerate and present algorithms performing this task.
引用
收藏
页码:645 / +
页数:2
相关论文
共 7 条
[1]  
Bingham E, 2000, Int J Neural Syst, V10, P1, DOI 10.1142/S0129065700000028
[2]   ADAPTIVE BLIND SEPARATION OF INDEPENDENT SOURCES - A DEFLATION APPROACH [J].
DELFOSSE, N ;
LOUBATON, P .
SIGNAL PROCESSING, 1995, 45 (01) :59-83
[3]   Complex random vectors and ICA models: Identifiability, uniqueness, and separability [J].
Eriksson, J ;
Koivunen, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) :1017-1029
[4]  
Lang, 1965, Algebra
[5]   Statistical mechanics of low-density parity check error-correcting codes over Galois fields [J].
Nakamura, K ;
Kabashima, Y ;
Saad, D .
EUROPHYSICS LETTERS, 2001, 56 (04) :610-616
[6]  
Stein W.A., 2010, Sage Mathematics Software (Version 4.5.3)
[7]  
Yeredor A, 2007, LECT NOTES COMPUT SC, V4666, P827