Focused SAR Image Formation of Moving Targets Based on Doppler Parameter Estimation

被引:66
作者
Noviello, Carlo [1 ,2 ]
Fornaro, Gianfranco [1 ]
Martorella, Marco [3 ]
机构
[1] CNR, Inst Electromagnet Sensing Environm, I-80124 Naples, Italy
[2] Univ Naples Federico II, I-80138 Naples, Italy
[3] Univ Pisa, Dept Ingn Informaz, I-56122 Pisa, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 06期
关键词
Doppler centroid; Doppler parameters estimation algorithm; Doppler rate; image-contrast-based technique (ICBT); inverse synthetic aperture radar (ISAR); synthetic aperture radar (SAR); ALGORITHM;
D O I
10.1109/TGRS.2014.2377293
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper addresses the problem of focusing moving targets in synthetic aperture radar (SAR) images. This task is solved here by using an inverse SAR (ISAR) technique. The ISAR technique performs an autofocus procedure by implementing exhaustive search algorithms, which are improved by classical convex optimization, of functions based on image contrast or entropy. In this paper, we discuss the possibility to perform an autofocus ISAR technique by exploiting the estimation of the target Doppler parameters, namely the Doppler centroid and the Doppler rate, which are related to the target motion parameters. The present algorithm is based on the reuse of efficient autofocus approaches that are classically used in direct SAR imaging. The effectiveness of the proposed method is tested on COSMO-SkyMed Spotlight SAR data of maritime targets. Furthermore, the proposed Doppler parameter estimation algorithm is compared with a well-known ISAR technique, namely the image-contrast-based technique.
引用
收藏
页码:3460 / 3470
页数:11
相关论文
共 50 条
  • [41] Nonambiguous SAR Image Formation of Maritime Targets Using Weighted Sparse Approach
    Xu, Gang
    Xia, Xiang-Gen
    Hong, Wei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1454 - 1465
  • [42] Variable Parameter Estimation of SAR Signal Based on Compression Sensing
    Gao, Shuai
    Xu, Huaping
    Qiu, Xue
    Yang, Bo
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 619 - 623
  • [43] Image-Domain Signal Modeling and Refocusing of Air Moving Targets for MEO Multichannel SAR
    Li, Yongkang
    Liang, Xincheng
    Liang, Junli
    Chen, Jianlai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [44] New Approach for SAR Imaging of Ground Moving Targets Based on a Keystone Transform
    Yang Jungang
    Huang Xiaotao
    Jin Tian
    Thompson, John
    Zhou Zhimin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 829 - 833
  • [45] DETECTION OF TARGETS MOVING IN AZIMUTH BASED ON VARIABLE-BORESIGHT MULTICHANNEL SAR
    Zheng, Hongchao
    Wang, Junfeng
    Liu, Xingzhao
    Gao, Yesheng
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2046 - 2049
  • [46] Efficient Detection and Imaging of Moving Targets in SAR Images Based on Chirp Scaling
    Cristallini, Diego
    Pastina, Debora
    Colone, Fabiola
    Lombardo, Pierfrancesco
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04): : 2403 - 2416
  • [47] SAR imaging of multiple maritime moving targets based on sparsity Bayesian learning
    Zhang, Yun
    Mu, Huilin
    Xiao, Tian
    Jiang, Yicheng
    Ding, Chang
    [J]. IET RADAR SONAR AND NAVIGATION, 2020, 14 (11) : 1717 - 1725
  • [48] An effective SAR Doppler center estimation method based on inner product
    Xu, J
    Li, G
    Li, J
    Peng, YN
    Xia, XG
    [J]. 2005 IEEE INTERNATIONAL RADAR, CONFERENCE RECORD, 2005, : 769 - 771
  • [49] An Improved Ground Moving Target Parameter Estimation and Imaging Method for Multichannel High Resolution SAR
    Dong, Qinghai
    Wang, Bingnan
    Xiang, Maosheng
    Jiao, Zekun
    Wang, Zhongbin
    Song, Chong
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [50] Refocusing and Motion Parameter Estimation for Ground Moving Targets Based on Improved Axis Rotation-Time Reversal Transform
    Huang, Penghui
    Xia, Xiang-Gen
    Liu, Xingzhao
    Liao, Guisheng
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03): : 479 - 494