Thermal rectification in Y-junction carbon nanotube bundle

被引:51
作者
Aiyiti, Adili [1 ,2 ,3 ]
Zhang, Zhongwei [1 ,2 ,3 ]
Chen, Bensong [4 ]
Hu, Shiqian [1 ,2 ,3 ]
Chen, Jie [1 ,2 ,3 ]
Xu, Xiangfan [1 ,2 ,3 ]
Li, Baowen [5 ]
机构
[1] Tongji Univ, Ctr Phonon & Thermal Energy Sci, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, China EU Joint Ctr Nanophonon, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[3] Tongji Univ, Sch Phys Sci & Engn, Shanghai Key Lab Special Artificial Microstruct M, Shanghai 200092, Peoples R China
[4] Chinese Acad Sci, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Key Lab Mat Phys,CAS Ctr Excellence Nanosci, Hefei 230031, Anhui, Peoples R China
[5] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
CNTs; Thermal rectification; MD simulations; Thermal diode; Thermal conductivity; CONDUCTIVITY;
D O I
10.1016/j.carbon.2018.09.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Active control of heat flow is one of the important concepts in phononic devices, among which thermal diode is a fundamental building block. The long-standing bottleneck is the relevant experiments lagging far behind theoretical results. In this paper, we experimentally demonstrated considerable thermal rectification in the Y-junction carbon nanotube (CNT) bundle with suspended thermal bridge method. The thermal rectification ratio is up to -8.3%+/- 0.5% with a relatively low temperature difference (Delta T= 4K). Molecular dynamics simulation results show that asymmetric phonon transmission in different (forward and backward) directions is responsible for the thermal rectification observed in the asymmetric CNT structure. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:673 / 679
页数:7
相关论文
共 34 条
[1]   Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS2 using electron beam self-heating technique [J].
Aiyiti, Adili ;
Bai, Xue ;
Wu, Jing ;
Xu, Xiangfan ;
Li, Baowen .
SCIENCE BULLETIN, 2018, 63 (07) :452-458
[2]   Thermal conductivity of suspended few-layer MoS2 [J].
Aiyiti, Adili ;
Hu, Shiqian ;
Wang, Chengru ;
Xi, Qing ;
Cheng, Zhaofang ;
Xia, Minggang ;
Ma, Yanling ;
Wu, Jianbo ;
Guo, Jie ;
Wang, Qilang ;
Zhou, Jun ;
Chen, Jie ;
Xu, Xiangfan ;
Li, Baowen .
NANOSCALE, 2018, 10 (06) :2727-2734
[3]  
[Anonymous], [No title captured]
[4]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[5]   Thermal contact resistance across nanoscale silicon dioxide and silicon interface [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
[6]   A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (20)
[7]   Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
[8]   Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential [J].
Girifalco, LA ;
Hodak, M ;
Lee, RS .
PHYSICAL REVIEW B, 2000, 62 (19) :13104-13110
[9]   Raman spectroscopy of covalently functionalized single-wall carbon nanotubes [J].
Graupner, R. .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (06) :673-683
[10]   ON ASYMMETRIC HEAT CONDUCTION IN COPPER-COPPER OXIDE RECTIFIERS [J].
HORN, FH .
JOURNAL OF APPLIED PHYSICS, 1951, 22 (09) :1214-1214