Domain Adaptation-Based Automatic Modulation Recognition

被引:1
|
作者
Li, Tong [1 ]
Xiao, Yingzhe [2 ]
机构
[1] Shanxi Engn Vocat Coll, Dept Comp Sci & Informat, Taiyuan 030032, Peoples R China
[2] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan 030600, Peoples R China
关键词
COGNITIVE RADIO NETWORKS; CLASSIFICATION;
D O I
10.1155/2021/4277061
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning-based Automatic Modulation Recognition (AMR) can improve the recognition rate compared with traditional AMR methods. However, in practical applications, as training samples and real scenario signal samples have different distributions in practical applications, the recognition rate for target domain samples can deteriorate significantly. This paper proposed an unsupervised domain adaptation based AMR method, which can enhance the recognition performance by adopting labeled samples from the source domain and unlabeled samples from the target domain. The proposed method is validated through signal samples generated from the open-sourced Software Defined Radio (SDR) GNU Radio. The training dataset is composed of labeled samples in the source domain and unlabeled samples in the target domain. In the testing dataset, the samples are from the target domain to simulate the real scenario. Through the experiment, the proposed method has a recognition rate increase of about 88% under the CNN network structure and 91% under the ResNet network structure.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Unsupervised Domain Adaptation for Human Activity Recognition in Radar
    Li, Xinyu
    Jing, Xiaojun
    He, Yuan
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [42] A Novel Attention Cooperative Framework for Automatic Modulation Recognition
    Chen, Shiyao
    Zhang, Yan
    He, Zunwen
    Nie, Jinbo
    Zhang, Wancheng
    IEEE ACCESS, 2020, 8 : 15673 - 15686
  • [43] Deep Learning Aided Method for Automatic Modulation Recognition
    Yang, Cheng
    He, Zhimin
    Peng, Yang
    Wang, Yu
    Yang, Jie
    IEEE ACCESS, 2019, 7 : 109063 - 109068
  • [44] A Complex-Valued Transformer for Automatic Modulation Recognition
    Li, Weihao
    Deng, Wen
    Wang, Keren
    You, Ling
    Huang, Zhitao
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22197 - 22207
  • [45] Sparsely Connected CNN for Efficient Automatic Modulation Recognition
    Tunze, Godwin Brown
    Huynh-The, Thien
    Lee, Jae-Min
    Kim, Dong-Seong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 15557 - 15568
  • [46] A Deep Neural Network Method For Automatic Modulation Recognition In OFDM With Index Modulation
    Liu, Fang
    Zhou, Yu
    Liu, Yuanan
    2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [47] Domain Adaptation for Face Recognition: Targetize Source Domain Bridged by Common Subspace
    Kan, Meina
    Wu, Junting
    Shan, Shiguang
    Chen, Xilin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 109 (1-2) : 94 - 109
  • [48] An Autoencoder-Based I/Q Channel Interaction Enhancement Method for Automatic Modulation Recognition
    Zhang, Fuxin
    Luo, Chunbo
    Xu, Jialang
    Luo, Yang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (07) : 9620 - 9625
  • [49] Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram
    Han, Hui
    Yi, Zhijian
    Zhu, Zhigang
    Li, Lin
    Gong, Shuaige
    Li, Bin
    Wang, Mingjie
    ELECTRONICS, 2023, 12 (03)
  • [50] Automatic Digital Modulation Recognition Based on Genetic-Algorithm-Optimized Machine Learning Models
    Ansari, Sam
    Alnajjar, Khawla A.
    Saad, Mohamed
    Abdallah, Saeed
    El-Moursy, Ali A.
    IEEE ACCESS, 2022, 10 : 50265 - 50277