Existence and uniqueness of solutions to impulsive fractional differential equations via the deformable derivative

被引:9
作者
Etefa, Mesfin [1 ]
N'Guerekata, Gaston M. [1 ]
Benchohra, Mouffak [2 ]
机构
[1] Morgan State Univ, Dept Math, Baltimore, MD 21239 USA
[2] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes, Algeria
关键词
26A33; 26D10; 47H10;
D O I
10.1080/00036811.2021.1979224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish sufficient conditions for the existence of solutions for a class of initial value problems for impulsive fractional differential equations involving the deformable fractional derivative. We achieve our results using classical fixed point theorems such as the Banach contraction principle, the Shaefer and the alternative Leray-Schauder theorems. We provide an example to illustrate our abstract results.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 10 条
[1]  
Bainov D.D., 1989, STABILITY THEORY DIF
[2]  
Benchohra M., 2006, IMPULSIVE DIFFERENTI, V2
[3]  
Benchohra M, 2009, ELECTRON J DIFFER EQ
[4]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[5]   EXPONENTIAL DECAY OF SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS WITH NONLOCAL INITIAL CONDITIONS [J].
DENG, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (02) :630-637
[6]  
Granas A., 2003, SPRINGER MONOGRAPHS
[7]  
Lakshmikantham V., 1989, World scientific, V6, DOI 10.1142/0906
[8]  
Mebrat M., 2021, J MATH EXT
[9]  
Mebrat M., J NONLINEAR EVOL EQU, V2020, P1
[10]  
Zulfeqarr F., 2017, ARXIV170500962V1, P1