Improving scanning speed of the AFMs with inversion-based feedforward control

被引:0
作者
Yang, Mei-Ju [1 ]
Li, Chun-Xia [1 ]
Gu, Guo-Ying [1 ]
Zhu, Li-Min [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
来源
2014 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO) | 2014年
关键词
AFMs; feedforward control; ZMETC; hysteresis compensation; MICROSCOPE POSITIONING STAGES; PRANDTL-ISHLINSKII MODEL; PROBE MICROSCOPY; TRACKING CONTROL; IDENTIFICATION; COMPENSATION; ACTUATORS;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents the design and experimental implementation of an inversion-based feedforward controller to achieve accurate tracking and fast scanning for an atomic force microscopy (AFM). The proposed controller reduces the tracking error by inverting the vibration dynamics and the hysteresis of the piezoelectric tube scanner (PTS). The hysteresis is compensated by directly constructing an inverse Prandtl-Ishlinskii model, while the vibration dynamics is suppressed by a zero magnitude error tracking controller. A comparison of the experimental images using the proposed controller and a dc-gain open-loop controller is given. The experimental results demonstrate the effectiveness of the proposed controller.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 22 条
[1]   High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes [J].
Ando, Toshio ;
Uchihashi, Takayuki ;
Fukuma, Takeshi .
PROGRESS IN SURFACE SCIENCE, 2008, 83 (7-9) :337-437
[2]   Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems [J].
Butterworth, J. A. ;
Pao, L. Y. ;
Abramovitch, D. Y. .
MECHATRONICS, 2012, 22 (05) :577-587
[3]   A COMPARISON OF CONTROL ARCHITECTURES FOR ATOMIC FORCE MICROSCOPES [J].
Butterworth, J. A. ;
Pao, L. Y. ;
Abramovitch, D. Y. .
ASIAN JOURNAL OF CONTROL, 2009, 11 (02) :175-181
[4]   Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage [J].
Chen, Xinkai ;
Hisayama, Takeshi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) :3927-3934
[5]   A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM [J].
Clayton, Garrett M. ;
Tien, Szuchi ;
Leang, Kam K. ;
Zou, Qingze ;
Devasia, Santosh .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2009, 131 (06) :1-19
[6]   Charge drives for scanning probe microscope positioning stages [J].
Fleming, A. J. ;
Leang, K. K. .
ULTRAMICROSCOPY, 2008, 108 (12) :1551-1557
[7]   A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages [J].
Fleming, Andrew J. ;
Aphale, Sumeet S. ;
Moheimani, S. O. Reza .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010, 9 (04) :438-448
[8]   Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl-Ishlinskii Model [J].
Gu, Guo-Ying ;
Zhu, Li-Min ;
Su, Chun-Yi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (03) :1583-1595
[9]   Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model [J].
Gu, Guo-Ying ;
Yang, Mei-Ju ;
Zhu, Li-Min .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (06)
[10]   Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner [J].
Kenton, Brian J. ;
Leang, Kam K. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2012, 17 (02) :356-369