Inverse systems of groupoids, with applications to groupoid C*-algebras

被引:3
作者
Austin, Kyle
Georgescu, Magdalena C.
机构
基金
以色列科学基金会;
关键词
Groupoids; Groupoid C*-algebras; Inverse approximation; Renault's Equivalence Theorem; EQUIVALENCE;
D O I
10.1016/j.jfa.2018.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define what it means for a proper continuous morphism between groupoids to be Haar system preserving, and show that such a morphism induces (via pullback) a *-morphism between the corresponding convolution algebras. We proceed to provide a plethora of examples of Haar system preserving morphisms and discuss connections to noncommutative CW-complexes and interval algebras. We prove that an inverse system of groupoids with Haar system preserving bonding maps has a limit, and that we get a corresponding direct system of groupoid C*-algebras. An explicit construction of an inverse system of groupoids is used to approximate a sigma-compact groupoid G by second countable groupoids; if G is equipped with a Haar system and 2-cocycle then so are the approximation groupoids, and the maps in the inverse system are Haar system preserving. As an application of this construction, we show how to easily extend the Maximal Equivalence Theorem of Jean Renault to sigma-compact groupoids. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:716 / 750
页数:35
相关论文
共 30 条
[1]  
[Anonymous], 1989, Sigma Ser. Pure Math.
[2]  
[Anonymous], 1964, UNIFORM SPACES MATH
[3]  
Austin K., ARXIV180400967
[4]   C*-simplicity and the unique trace property for discrete groups [J].
Breuillard, Emmanuel ;
Kalantar, Mehrdad ;
Kennedy, Matthew ;
Ozawa, Narutaka .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01) :35-71
[5]   Simplicity of algebras associated to ,tale groupoids [J].
Brown, Jonathan ;
Clark, Lisa Orloff ;
Farthing, Cynthia ;
Sims, Aidan .
SEMIGROUP FORUM, 2014, 88 (02) :433-452
[6]  
BUNECI MR, 2006, SURV MATH APPL, V1, P71
[7]  
Buss A., ARXIV170804105
[8]   A universal property for groupoid C*-algebras. I [J].
Buss, Alcides ;
Holkar, Rohit D. ;
Meyer, Ralf .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 :345-375
[9]  
Censor A, 2009, HOUSTON J MATH, V35, P591
[10]  
Choksi JR., 1958, Proc. London Math. Soc, V8, P321, DOI [10.1112/plms/s3-8.3.321, DOI 10.1112/PLMS/S3-8.3.321]